V. A. Kholomenyuk, V. V. Mykhaylyuk

ALMOST ANTIPROXIMINAL SETS IN L_{1}

V. A. Kholomenyuk, V. V. Mykhaylyuk. Almost antiproximinal sets in L_{1}, Mat. Stud. 35 (2011), 172-180.

We introduce a notion of almost antiproximinality of sets in the space L_{1} which is a weakening of the notion of antiproximinality. Also we investigate properties of almost antiproximinal sets and establish a method of construction of almost antiproximinal sets.
В. А. Холоменюк, В. В. Михайлюк. Почти антипроксиминальные множества в пространстве $L_{1} / /$ Мат. Студії. - 2011. - Т.35, №2. - С.172-180.

В пространстве L_{1} вводится понятие почти антипроксиминальности множеств, которое является ослаблением понятия антипроксиминальности. Исследуются свойства почти антипроксиминальных множеств и устанавливается метод построения почти антипроксиминальных множеств.

1. Introduction. By $d(x, M)$ we denote the distance $\inf \{\|x-y\|: y \in M\}$ between an element x of a normed space X and a non-empty set $M \subseteq X$. An element $y \in M$ is called the nearest point to x if $\|x-y\|=d(x, M)$. The set of all nearest points to a point x in a set M is denoted by $P_{M}(x)$.

A set M is called an antiproximinal $(A P)$ set if $P_{M}(x)=\varnothing$ for each $x \in X \backslash M$.
Let X^{*} be the Banach space conjugate to X. A functional $f \in X^{*}$ attains supremum on $M \subseteq X$ if there exists an element $x \in M$ such that $f(x)=\sup f(M)$. By $\Sigma(M)$ we denote the set of all functionals which attain supremum on M, i.e.

$$
\Sigma(M)=\left\{f \in X^{*}: \exists x \in M \mid f(x)=\sup f(M)\right\}
$$

Let X be a normed space, $x_{0} \in X \backslash\{0\}$. A functional $f_{0} \in X^{*}$ is called a support functional in x_{0} if $\left\|f_{0}\right\|=1$ and $f_{0}\left(x_{0}\right)=\left\|x_{0}\right\|$.
M. Edelstein and A. Thompson in [1] showed that a bounded closed convex subset A of Banach space X is AP if and only if each non-zero support functional of the set A does not attain maximum on the closed unit ball B of X, i.e. $\Sigma(A) \cap \Sigma(B)=\{0\}$.

In 1961 E. Bishop and P. Phelps proved that each Banach space is subreflexive, i.e. the set of functionals which attain their maximum at unit ball is dense in this space [2], and in 1963 they generalized this result to the case of convex sets (see [3]).

Plenty of mathematicians have worked on the problem of the existence of non-empty closed convex bounded AP-sets in Banach spaces. In particular, it is proved in [1]-[7] that such sets exist in the spaces $c_{0}, c, L_{\infty}, C(X)$ (with some especial conditions on X).

Besides, V. Klee showed in [4] that a Banach space X contains a non-empty closed convex (not obligatory bounded) AP-set if and only if X is not reflexive.

2010 Mathematics Subject Classification: 46B28, 46E30.

In connection with these facts, the following question on the existence of non-empty closed convex bounded AP-sets in L_{1} was naturally risen by professor V. Fonf (see [12]).

Question. Do there exist non-empty closed convex bounded AP-sets in L_{1} ?
Note that the example of radially bounded (i.e. bounded in each direction) AP-set M in L_{1} was constructed in [7], but this set M is not bounded.

In this paper we introduce some weakening of the notion of antiproximinality which we call almost antiproximinality, and investigate properties of closed convex bounded almost AP-sets in L_{1}.
2. Definition of almost AP-set in L_{1}, examples. By L_{1} and L_{∞} we denote the spaces $L_{1}[0,1]$ and $L_{\infty}[0,1]$ respectively. The space L_{∞} we identify with the space L_{1}^{*} and denote $y(x)=\langle x, y\rangle=\int_{0}^{1} y(t) x(t) d \mu$. Furthermore, for a set $A \subseteq L_{1}$, the sets $\left\{y \in L_{\infty}:\langle x, y\rangle \leq\right.$ $1 \forall x \in A\}$ and $\left\{y \in L_{\infty}:|\langle x, y\rangle| \leq 1 \forall x \in A\right\}$ are called the polar and the absolute polar of the set A respectively. The polar and the absolute polar of a set $B \subseteq L_{\infty}$ are introduced similarly.

It is easily seen that the set $\Sigma(B)$ of all support functionals at the unit ball B of L_{1} consists of all $y \in L_{\infty}$ such that $\mu(\{t \in[0,1]:|y(t)|=\|y\|\})>0$. The most obvious examples of non-zero functionals $y \in \Sigma(B)$ are so-called signs, i.e. such $y \in L_{\infty}$ that $|y|=\chi_{T}$, where χ_{T} is the characteristic function of a measurable set $T \subseteq[0,1]$ having positive measure.

According to the characterization of AP-sets obtained by M. Edelstein and A. Thompson, the next notion is a natural weakening of the conception of antiproximinality in L_{1}.

Definition 1. A set $A \subseteq L_{1}$ is called almost antiproximinal (almost $A P$) if for each set $T \subseteq[0,1]$ of positive measure any functional $y \in L_{\infty}$ such that $|y|=\chi_{T}$ does not attain supremum on A.

Suppose that a set $A \subseteq L_{1}$ has the following property: $x \in A$ if and only if $|x| \in A$. Then almost antiproximinality of A is equivalent to the fact that $\chi_{T} \notin \Sigma(A)$ for each measurable set $T \subseteq[0,1]$ having positive measure. (Indeed, if a sign attains supremum on a set $T \subseteq[0,1]$ at some point $x \in A$, then χ_{T} attains supremum at $|x| \in A$).

We denote $A_{y}=\left\{x \in L_{1}: \int_{0}^{1}|x y| d \mu \leq 1\right\}$ for any function $y \in L_{\infty}$.
Definition 2. A measurable function $y:[0,1] \rightarrow \mathbb{R}$ is called rearrange monotone if for each $\alpha \in \mathbb{R}$ the set $\{t \in[0,1]: y(t)=\alpha\}$ has measure zero.

Proposition 1. Let $y \in L_{\infty}$ be rearrange monotone. Then the set $M=A_{y}$ is an almost $A P$-set, but is not an AP-set.

Proof. Let $T \subseteq[0,1]$ and $\mu(T)>0$. Denote $m=\sup _{\mu(F)=0} \inf _{t \in T \backslash F}|y(t)|$.
We will prove that $\alpha=\sup _{x \in M} \int_{0}^{1}|x| \chi_{T} d \mu \geq \frac{1}{m}$.
Fix $\varepsilon>0$. The set $S=\{t \in T: m \leq|y(t)| \leq m+\varepsilon\}$ has non-zero measure. Consider the function $x=\frac{1}{(m+\varepsilon) \mu(S)} \cdot \chi_{S}$. Since

$$
\int_{0}^{1}|x y| d \mu \leq \frac{1}{(m+\varepsilon) \mu(S)}(m+\varepsilon) \int_{0}^{1} \chi_{S} d \mu=1
$$

one has that $x \in M$. So, $\alpha \geq \int_{0}^{1} x d \mu=\frac{1}{(m+\varepsilon)}$. Tending ε to zero, we obtain that $\alpha \geq \frac{1}{m}$, in particular $\alpha=+\infty$ if $m=0$.

It remains to show that $\int_{0}^{1}|x| \chi_{T} d \mu<\frac{1}{m}$ for each $x \in M$ (so it will be proved that $\left.\chi_{T} \notin \Sigma(M)\right)$.

Fix $x \in M$ and put $T_{1}=\{t \in T:|x(t)|>0\}$. If $\mu\left(T_{1}\right)=0$ then $\int_{0}^{1}|x| \chi_{T} d \mu=0<\frac{1}{m}$. Suppose now $\mu\left(T_{1}\right)>0$. Since the set $\{t \in[0,1]:|y(t)|=m\}$ has zero measure, without loss of generality we can assume that $|y(t)|>m$ for each $t \in T_{1}$. Then $m|x(t)|<|x(t) y(t)|$ for each $t \in T_{1}$ and

$$
m \int_{0}^{1}|x| \chi_{T} d \mu=m \int_{T_{1}}|x| \chi_{T} d \mu<\int_{T_{1}}|x y| d \mu \leq \int_{0}^{1}|x y| d \mu \leq 1
$$

So, $\int_{0}^{1}|x| \chi_{T} d \mu<\frac{1}{m}$ and M is an almost AP-set.
Now we will prove that M is not an AP-set. Assume $a=\operatorname{essinf}|y|, c=\operatorname{esssup}|y|$ and $b=\frac{a+c}{2}$. Since y is rearrange monotone, $a<c$ and the sets $S=\{t \in[0,1]:|y(t)| \in(a, b)\}$ and $T=\{t \in[0,1]:|y(t)| \in(b, c)\}$ have measure greater than zero.

Consider the functions $y_{0}:[0,1] \rightarrow \mathbb{R}$ and $x_{0}:[0,1] \rightarrow \mathbb{R}$

$$
y_{0}(t)=\left\{\begin{array}{ll}
|y(t)|, & t \in S, \\
b, & t \in T, \\
0, & t \notin T \cup S,
\end{array} \quad x_{0}(t)= \begin{cases}\frac{1}{|y(t)| \mu(S)}, & t \in S, \\
0, & t \notin S\end{cases}\right.
$$

Since $\left|y_{0}\right| \leq|y|$, we have that $\int_{0}^{1} x y_{0} d \mu \leq 1$ for each $x \in A$.
On the other hand, $\int_{0}^{1}\left|x_{0} y\right| d \mu=\int_{S}\left|x_{0} y\right| d \mu=1=\int_{0}^{1}\left|x_{0} y_{0}\right| d \mu$. So $y_{0} \in \Sigma(M) \cap \Sigma\left(B_{1}\right)$ which means that M is not an AP-set.

Proposition 2. Intersection of two almost $A P$-sets in L_{1} need not be an $A P$-set.
Proof. Let $y_{1}(t)=1+t, y_{2}(t)=2-t$,

$$
A_{1}=\left\{x \in L_{1}: \int_{0}^{1}|x| y_{1} d \mu \leq 1\right\}, A_{2}=\left\{x \in L_{1}: \int_{0}^{1}|x| y_{2} d \mu \leq 1\right\}
$$

and $A=A_{1} \cap A_{2}$. By Proposition 1 , the sets A_{1} and A_{2} are almost AP-sets.
Consider the functions $y_{0}=\chi_{[0,1]}$ and $x_{0}=\frac{2}{3} \chi_{[0,1]} \in A$. Note that $y_{0}=\frac{1}{3}\left(y_{1}+y_{2}\right)$. Now for each $x \in A$ we have

$$
\int_{0}^{1} x y_{0} d \mu=\frac{1}{3}\left(\int_{0}^{1} x y_{1} d \mu+\int_{0}^{1} x y_{2} d \mu\right) \leq \frac{2}{3}=\int_{0}^{1} x_{0} y_{0} d \mu
$$

Thus, $y_{0} \in \Sigma(A)$.
A set A of measurable functions on $[0,1]$ is called solid if for any measurable functions x_{1} and x_{2} the condition $\left|x_{1}\right| \leq\left|x_{2}\right| \in A$ implies that $x_{1} \in A$.
Proposition 3. Let $M \subseteq L_{1}$ be a non-empty closed absolute convex bounded solid set and $B=\Sigma(M) \cap M^{o} \cap L_{\infty}^{+}$, where M^{o} is the absolute polar of the set M. Then $M=\cap_{y \in B} A_{y}$.
Proof. Note that the absolute polar M^{o} and the set $\Sigma(M)$ are solid and $A_{y_{1}}=A_{y_{2}}$ if $\left|y_{1}\right|=\left|y_{2}\right|$. So, $\cap_{y \in B} A_{y}=\cap_{y \in C} A_{y}$, where $C=\Sigma(M) \cap M^{o}$.

According to [3], the set $\Sigma(M)$ is norm dense in L_{∞}. We show that C is dense in M^{o}. Assume to the contrary that there exist $\varepsilon>0, y \in M^{o},\left(y_{n}\right)_{n=1}^{\infty}, y_{n} \in \Sigma(M),\left(x_{n}\right)_{n=1}^{\infty}$, $x_{n} \in M$, such that $\lim _{n \rightarrow \infty} y_{n}=y$ and $\left|y_{n}\left(x_{n}\right)\right|>1+\varepsilon$ for any $n \in \mathbb{N}$. Using boundedness of M, we choose $n \in \mathbb{N}$ such that $\left\|\left(y_{n}-y\right)\left(x_{n}\right)\right\|<\frac{\varepsilon}{2}$. Then $\left|y\left(x_{n}\right)\right|>1+\frac{\varepsilon}{2}$, which is impossible.

Moreover, C is solid, so $\cap_{y \in B} A_{y}=\cap_{y \in C} A_{y}=C^{o}=\left(C^{o o}\right)^{o}=M^{o o}=M$.

In connection with Propositions 2 and 3 the following question naturally arises.
Question. For which sets $B \subseteq L_{\infty}$ the set $M=\cap_{y \in B} A_{y}$ is an almost $A P$-set?
3. Positive polars in L_{1} and L_{∞}, and their properties. Let

$$
X=L_{1}^{+}=\left\{x \in L_{1}: x(t) \geq 0 \text { almost everywhere (a.e.) on }[0,1]\right\}
$$

and $Y=\left\{y \in L_{\infty}^{+}: y(t) \geq 0\right.$ a.e. on $\left.[0,1]\right\}$. Denote by $\sigma(X, Y)$ the weakest topology on X such that for each $y \in Y$ the function $f_{y}: X \rightarrow \mathbb{R}, f_{y}(x)=\int_{0}^{1} x y d \mu$, is continuous. Similarly, by $\sigma(Y, X)$ we denote the weakest topology on Y such that for each $x \in X$ the function $f^{x}: Y \rightarrow \mathbb{R}, f^{x}(y)=\int_{0}^{1} x y d \mu$, is continuous. We will shortly denote by σ the topologies $\sigma(X, Y)$ and $\sigma(Y, X)$.

Proposition 4. The topology σ coincides with the restriction of the weak topology w of L_{1} on X.

Proof. Obviously, the restriction of w on X is stronger than σ. So, it remains to prove that for any $x_{0} \in X$ and weak neighborhood U of the point x_{0} in L_{1} the set $U \cap X$ is a σ-neighborhood of the point x_{0} in X. It is sufficient to consider the case $U=\left\{x \in L_{1}:\left|\left\langle x-x_{0}, y\right\rangle\right| \leq 1\right\}$, where $y \in L_{\infty}$ is fixed.

We denote $A=\{t \in[0,1]: y(t) \geq 0\}$ and $B=\{t \in[0,1]: y(t)<0\}$. Put $y_{1}=y \chi_{A}$, $y_{2}=-y \chi_{B}, U_{1}=\left\{x \in X:\left|\left\langle x-x_{0}, y_{1}\right\rangle\right| \leq \frac{1}{2}\right\}$ and $U_{2}=\left\{x \in X:\left|\left\langle x-x_{0}, y_{2}\right\rangle\right| \leq \frac{1}{2}\right\}$. It is clear that $y_{1}, y_{2} \in Y, U_{1}, U_{2}$ are σ-neighborhoods of $x_{0} \in X$, moreover $U_{1} \cap U_{2} \subseteq U \cap X$. So, $U \cap X$ is a σ-neighborhood of the point x_{0}.

The following proposition can be proved similarly.
Proposition 5. Topology σ coincides with the restriction of the weak ${ }^{*}$ topology w^{*} of L_{∞} on Y.

Given non-empty sets $A \subseteq X$ and $B \subseteq Y$, the sets

$$
\pi(A)=\{y \in Y:\langle x, y\rangle \leq 1 \forall x \in A\} \text { and } \pi(B)=\{x \in X:\langle x, y\rangle \leq 1 \forall y \in B\}
$$

are called the positive polars of the sets A and B respectively.
For any $y_{1}, y_{2} \in Y$ we denote $\left[y_{1}, y_{2}\right]=\left\{y \in Y: y_{1} \leq y \leq y_{2}\right\}$.
Proposition 6. Let $A \subseteq X$ be a neighborhood of zero in X. Then $\pi(A)$ is σ-compact in Y, in particular, for each $y \in Y$ the set $[0, y]$ is σ-compact.

Proof. Note that the set $\tilde{A}=\left\{x \in L_{1}:|x| \in A\right\}$ is a neighborhood of zero in L_{1}. Let $B=\pi(A)$ and $\tilde{B}=\tilde{A}^{o}$ be the absolute polar of \tilde{A} with respect to the duality $\left\langle L_{1}, L_{\infty}\right\rangle$.

Now we show that $y \in \tilde{B}$ if and only if $|y| \in B$.
Let $y \in \tilde{B}$ and $x \in A$ be arbitrary elements. Consider the element $x^{\prime} \in L_{1}$, which is defined in the following way:

$$
x^{\prime}(t)= \begin{cases}x(t), & y(t) \geq 0 \\ -x(t), & y(t)<0\end{cases}
$$

Obviously, $x^{\prime} \in \tilde{A}$ and $x^{\prime}(t) y(t)=x(t)|y(t)|$ on $[0,1]$. Then $\left|\int_{0}^{1} x\right| y|d \mu|=\left|\int_{0}^{1} x^{\prime} y d \mu\right| \leq 1$. So, $|y| \in B$.

Conversely, let $y \in L_{\infty}$ be such that $|y| \in B$ and let $x \in \tilde{A}$ be an arbitrary element. Then $|x| \leq x^{\prime}$ and $\left|\int_{0}^{1} x y d \mu\right| \leq\left|\int_{0}^{1}\right| x| | y|d \mu| \leq 1$. Hence, $y \in \tilde{B}$ if and only if $|y| \in B$, in particular, $B=\tilde{B} \cap Y$. According to the Alaouglu-Burbaki theorem [8, p.117], the set \tilde{B} is w^{*}-compact. Now using Proposition 3, the equality $B=\tilde{B} \cap Y$ and w^{*}-closeness of Y in L_{∞}, we obtain that B is σ-compact in Y.
Proposition 7. For any non-empty set $B \subseteq Y$ the positive bipolar $\pi(\pi(B))$ is the σ-closed convex hull of the set $\cup_{b \in B}[0, b]$.
Proof. Denote $D=\operatorname{co}\left(\cup_{b \in B}[0, b]\right)$ and $C=\bar{D}^{\sigma}$. Obviously, $C \subseteq \pi(\pi(B))$. Besides, $B \subseteq D$, therefore $\pi(\pi(B)) \subseteq \pi(\pi(D))$. Now it is sufficient to prove that $\pi(\pi(D))=C$.

We set $D^{o}=\left\{x \in L_{1}:\langle x, y\rangle \leq 1 \quad \forall y \in D\right\}$. Note that for any $y \in D$ and a measurable set $A \subseteq[0,1]$ we have $y \cdot \chi_{A} \in D$.

For any $x \in L_{1}$ denote $x^{+}=x \cdot \chi_{A}$, where $A=\{t \in[0,1]: x(t)>0\}$. Now we show that $x \in D^{o}$ if and only if $x^{+} \in D^{o}$, i.e. $x^{+} \in \pi(\pi(D))$. Note that $\int_{0}^{1} x y d \mu \leq \int_{0}^{1} x^{+} y d \mu$ for each $y \in Y$, therefore $x \in D^{o}$ if $x^{+} \in D^{o}$.

Let $x \in D^{o}, y \in D$ and $A=\{t \in[0,1]: x(t)>0\}$. Then $y \cdot \chi_{A} \in D$ and $\int_{0}^{1} x^{+} y d \mu=$ $\int_{0}^{1} x y \chi_{A} d \mu \leq 1$. Thus, $x^{+} \in D^{o}$.

Consider the set $D^{o o}=\left\{y \in L_{\infty}:\langle x, y\rangle \leq 1 \quad \forall x \in D^{o}\right\}$. We prove that $D^{o o}=\pi(\pi(D))$.
First we will show that $D^{o o} \subseteq Y$. Assume $y \in L_{\infty}, A=\{t \in[0,1]: y(t)<0\}$ and $\mu(A)>0$. Choose $x \in X$ such that $\{t \in[0,1]: x(t)>0\} \subseteq A$ and $\int_{0}^{1} x y d \mu<-1$. Then $z=-x \in D^{o}$ as $z^{+}=0 \in \pi(D)$, and $\int_{0}^{1} z y d \mu=-\int_{0}^{1} x y d \mu>1$. Thus, $y \notin D^{o o}$.

Since for each $y \in Y$, we have $\int_{0}^{1} x y d \mu \leq \int_{0}^{1} x^{+} y d \mu$,

$$
\begin{gathered}
D^{o o}=\left\{y \in Y: \int_{0}^{1} x y d \mu \leq 1 \forall x \in D^{o}\right\}=\left\{y \in Y: \int_{0}^{1} x^{+} y d \mu \leq 1 \forall x \in D^{o}\right\}= \\
=\left\{y \in Y: \int_{0}^{1} x y d \mu \leq 1 \forall x \in \pi(D)\right\}=\pi(\pi(D)) .
\end{gathered}
$$

Now by the bipolar theorem [9, p.160] and by Proposition 5 we have $\pi(\pi(D))=D^{o o}=$ $\bar{D}^{w^{*}}=\bar{D}^{\sigma}=C$.

Proposition 8. Let $B=B_{1} \cup B_{2} \subseteq Y$, and let B be norm bounded. Then

$$
\overline{\operatorname{co}\left(\bigcup_{b \in B}[0, b]\right)}=\operatorname{co}\left(\overline{\operatorname{co}\left(\bigcup_{b \in B_{1}}[0, b]\right)} \cup \overline{\operatorname{co}\left(\bigcup_{b \in B_{2}}[0, b]\right)}\right)
$$

where closures are taken in the σ-topology.
Proof. Denote $A_{1}=\operatorname{co}\left(\cup_{b \in B_{1}}[0, b]\right), A_{2}=\operatorname{co}\left(\cup_{b \in B_{2}}[0, b]\right)$ and $A=\operatorname{co}\left(\cup_{b \in B}[0, b]\right)$. Obviously, $\operatorname{co}\left(\overline{A_{1}} \cup \overline{A_{2}}\right) \subseteq \bar{A}$.

Now we show that $\bar{A} \subseteq \operatorname{co}\left(\overline{A_{1}} \cup \overline{A_{2}}\right)$. Note that $A \subseteq \operatorname{co}\left(A_{1} \cup A_{2}\right)$. Therefore, it is sufficient to prove that the set $\operatorname{co}\left(\overline{A_{1}} \cup \overline{A_{2}}\right)$ is closed.

By Proposition 7, we have $\overline{A_{1}}=\pi\left(\pi\left(B_{1}\right)\right)$ and $\overline{A_{2}}=\pi\left(\pi\left(B_{2}\right)\right)$. Moreover, the norm boundedness of the sets B_{1} and B_{2} together with Proposition 6 imply that the sets $\overline{A_{1}}$ and $\overline{A_{2}}$ are σ-compact.

Consider the following continuous mapping $\varphi:[0,1]^{2} \times Y^{2} \rightarrow Y, \varphi\left(\lambda, \mu, y_{1}, y_{2}\right)=\lambda y_{1}+$ μy_{2}. The set $S=\left\{(\lambda, \mu) \in[0,1]^{2}: \lambda+\mu=1\right\}$ is compact in [0, 1] $]^{2}$. Hence, the set $\operatorname{co}\left(\overline{A_{1}} \cup\right.$ $\left.\overline{A_{2}}\right)=\left\{\lambda x_{1}+\mu x_{2}: x_{1} \in A_{1}, x_{2} \in A_{2}\right\}=\varphi\left(S \times \overline{A_{1}} \times \overline{A_{2}}\right)$ is compact as the continuous image of a compact set. Then $\operatorname{co}\left(\overline{A_{1}} \cup \overline{A_{2}}\right)$ is closed.

Proposition 9. Let measurable functions x, y, z be such that $y \leq z$ and $\int_{0}^{1} x z d \mu \leq \int_{0}^{1} x y d \mu$. Then $y=z$ a.e. at $T=\{t \in[0,1]: x(t)>0\}$.
4. Support functionals at X and Y. For each set $A \subseteq X=L_{1}^{+}$by $\Sigma(A)$ we denote the set of all $y \in Y=L_{\infty}^{+}$such that $\max _{x \in A}\langle x, y\rangle$ exists. By $\Sigma_{0}(A)$ we denote the set of all $y \in Y=L_{\infty}^{+}$such that $\max _{x \in A}\langle x, y\rangle=1$, and by $\Sigma_{\max }(A)$ denote the set of all maximal elements of $\Sigma_{0}(A)$. Given any set $B \subseteq Y$, by $\Sigma_{0}(B)$ we denote the set of all $x \in X=L_{1}^{+}$such that $\max _{y \in B}\langle x, y\rangle=1$, and by $\Sigma_{\max }(B)$ denote the set of all maximal elements of $\Sigma_{0}(B)$.

Proposition 10. Let $A \subseteq X$ be such that $\Sigma_{0}(A)$ is norm bounded in L_{1}. Then for each $y \in \Sigma_{0}(A)$ there exists $y^{\prime} \in \Sigma_{\max }(A)$ such that $y \leq y^{\prime}$.

Proof. Suppose the contrary. Then by the Levi theorem [10, p.299], we can construct a strictly increasing transfinite sequence $\left(y_{\xi}\right): \xi<\omega_{1}$ of functions $y_{\xi} \in \Sigma_{0}(A)$, where ω_{1} is the first uncountable ordinal. Then $\int_{0}^{1} y_{\xi} d \mu<\int_{0}^{1} y_{\eta} d \mu$ for $1 \leq \xi<\eta<\omega_{1}$ and the transfinite sequence of numbers $a_{\xi}=\int_{0}^{1} y_{\xi} d \mu$ is strictly increasing, which is impossible.

Proposition 11. Let $M \subseteq L_{1}$ be a closed absolute convex bounded solid neighborhood of zero, $A=M \cap X$ and $D=\Sigma_{\max }(A)$. Then $M=\cap_{y \in D} A_{y}$.

Proof. By Proposition 3, we have $M=\cap_{y \in C} A_{y}$, where $C=\Sigma(A) \cap \pi(A)$. Obviously, $D \subseteq C$. Note that for each $y \in C$ there exists $y^{\prime} \in \Sigma_{0}(A)$ such that $y \leq y^{\prime}$. Since $B=\Sigma_{0}(A) \subseteq \pi(A)$ and A is neighborhood of zero in $X, \Sigma_{0}(A)$ is norm bounded in L_{∞}, and so, it is also norm bounded in L_{1}. Then by Proposition 10 , for each $y^{\prime} \in \Sigma_{0}(A)$ there exists $y^{\prime \prime} \in \Sigma_{\max }(A)$ such that $y^{\prime} \leq y^{\prime \prime}$. Thus, for each $y \in C$ there exists $y^{\prime \prime} \in D$ such that $y \leq y^{\prime \prime}$, in particular, $A_{y} \supseteq A_{y^{\prime \prime}}$. Then $M=\cap_{y \in C} A_{y}=\cap_{y \in D} A_{y}$.

Proposition 12. Let a set $A \subseteq X$ be such that $\Sigma_{0}(A)$ is a norm bounded non-empty set in L_{1} and all functions $y \in \Sigma_{\max }(A)$ are rearrange monotone. Then the set $M=\left\{x \in L_{1}:|x| \in A\right\}$ is an almost AP-set.

Proof. Suppose the contrary. Then there exists a measurable set $T \subseteq[0,1]$ with $\mu(T)>0$ such that $\alpha=\max _{x \in M} \int_{T} x d \mu$ exists. Note that $\alpha \neq 0$. Indeed, if $\alpha=0$, then $x \chi_{T}=0$ for each $x \in A$. Now for any $y_{1} \in \Sigma_{0}(A)$ and $C>0$ we have $y_{1}+C \chi_{T} \in \Sigma_{0}(A)$, which contradicts the boundedness of $\Sigma_{0}(A)$.

Since the set M is balanced, $\alpha>0$. Consider the function $y_{0}=\frac{1}{\alpha} \chi_{T}$. Then $y_{0} \in Y$ and $\max _{x \in M}\left\langle x, y_{0}\right\rangle=\max _{x \in A}\left\langle x, y_{0}\right\rangle=1$. So, $y_{0} \in \Sigma_{0}(A)$.

Then there exists $x_{0} \in A$ such that $\left\langle x_{0}, y_{0}\right\rangle=1$. By Proposition 10, there exists $y_{1} \in$ $\Sigma_{\max }(A)$ such that $y_{0} \leq y_{1}$. Besides, $\left\langle x_{0}, y_{0}\right\rangle=\left\langle x_{0}, y_{1}\right\rangle=1$. By Proposition $9, y_{0}=y_{1}$ on the set $S=\left\{t \in[0,1]: x_{0}(t)>0\right\}$. Now since $\left\langle x_{0}, y_{0}\right\rangle=1$, we obtain that $\mu(S \cap T)>0$. Hence, $y_{1}(t)=\frac{1}{\alpha}$ for each $t \in S \cap T$, which contradicts the conditions of the proposition, because $y_{1} \in \Sigma_{\max }(A)$ is rearrange monotone.

Theorem 1. Let $B \subseteq Y, A=\pi(B)$ and the following conditions hold:
(i) the set B is norm bounded in L_{1};
(ii) for each $x \in \Sigma_{0}(\pi(A))$ there exists $\varepsilon>0$ such that the set $B_{x}=\{y \in B:\langle x, y\rangle \geq 1-\varepsilon\}$ is finite and each $y \in \operatorname{co}\left(B_{x}\right)$ is rearrange monotone.
Then the set $M=\bigcap_{y \in B} A_{y}$ is almost $A P$.

Proof. We show that A satisfies the conditions of Proposition 12. Note that by (i), the set $\tilde{B}=\pi(A)=\pi^{2}(B)=\overline{\operatorname{co}\left(\cup_{b \in B}[0, b]\right)}$ is norm bounded.

Let $y_{0} \in \Sigma_{\max }(A)$ and $x_{0} \in A$ be such that $\left\langle x_{0}, y_{0}\right\rangle=1$. Obviously, $y_{0} \in \tilde{B}=\pi(A)=$ $\{y \in Y:\langle x, y\rangle \leq 1 \quad \forall x \in A\}$. Besides, since $x_{0} \in A$, one has that $\left\langle x_{0}, y\right\rangle \leq 1=\left\langle x_{0}, y_{0}\right\rangle$ for any $y \in \tilde{B}$. So $x_{0} \in \Sigma_{0}(\tilde{B})$. Using condition (ii), we choose $\varepsilon>0$ so that set $B_{1}=\{y \in$ $\left.B:\left\langle x_{0}, y\right\rangle \geq 1-\varepsilon\right\}$ is bounded and each $y \in \operatorname{co}\left(B_{1}\right)$ is rearrange monotone. Then we put $B_{2}=B \backslash B_{1}$.

Note that by the σ-compactness of $[0, y]$, finiteness of B_{1} and Propositions 7 and 8 we have that

$$
\tilde{B}=\overline{\operatorname{co}\left(\bigcup_{b \in B}[0, b]\right)}=\operatorname{co}\left(\operatorname{co}\left(\bigcup_{b \in B_{1}}[0, b]\right) \cup \overline{\operatorname{co}\left(\bigcup_{b \in B_{2}}[0, b]\right)}\right) .
$$

Denote $C_{1}=\operatorname{co}\left(\cup_{b \in B_{1}}[0, b]\right)$ and $C_{2}=\overline{\operatorname{co}\left(\cup_{b \in B_{2}}[0, b]\right)}$. Choose $y_{1} \in C_{1}, y_{2} \in C_{2}, \alpha_{1}, \alpha_{2} \in[0,1]$ with $\alpha_{1}+\alpha_{2}=1$ such that $y_{0}=\alpha_{1} y_{1}+\alpha_{2} y_{2}$. Remind that $\left\langle x_{0}, y\right\rangle \leq 1$ for any $y \in \tilde{B}$ and $\left\langle x_{0}, y\right\rangle \leq 1-\varepsilon$ for each $y \in C_{2}$. Now we obtain

$$
1=\left\langle x_{0}, y_{0}\right\rangle=\alpha_{1}\left\langle x_{0}, y_{1}\right\rangle+\alpha_{2}\left\langle x_{0}, y_{2}\right\rangle \leq \alpha_{1}+\alpha_{2}(1-\varepsilon)=1-\alpha_{2} \varepsilon
$$

So $\alpha_{2}=0$ and $y_{0} \in C_{1}$, i.e. $y_{0}=\sum_{b \in B_{1}} \alpha_{b} y_{b}$, where $\alpha_{b} \geq 0$ and $\sum_{b \in B_{1}} \alpha_{b}=1$, and $y_{b} \in[0, b]$ for each $b \in B_{1}$.

We set $y^{*}=\sum_{b \in B_{1}} \alpha_{b} b$ and show that $y_{0}=y^{*}$. Firstly observe that $y_{0} \leq y^{*}$ as $y_{b} \leq b$ for any $b \in B_{1}$. On the other hand, since $\left\langle x_{0}, y^{*}\right\rangle \geq\left\langle x_{0}, y\right\rangle=1$ and $y^{*} \in \pi(A)$, we obtain $\left\langle x_{0}, y^{*}\right\rangle=\max _{x \in A}\left\langle x, y^{*}\right\rangle=1$. Hence, $y^{*} \in \Sigma_{0}(A)$. Then $y_{0} \in \Sigma_{\max }(A)$ yields $y_{0}=y^{*}=$ $\sum_{b \in B_{1}} \alpha_{b} b \in \operatorname{co}\left(B_{1}\right)$. Therefore, y_{0} is rearrange monotone, according to the choice of B_{1}.

Thus, A satisfies the conditions of Proposition 12, and M is an almost AP-set.
Corollary 1. Let $B \subseteq Y$ be a finite set such that all functions $y \in \operatorname{co}(B)$ are rearrange monotone. Then the set $M=\cap_{y \in B} A_{y}$ is almost AP.

Proof. Denote $A=\pi(B), D=\pi(\pi(B))$. The set D satisfies the conditions of Theorem 1 as $\Sigma_{\max }(A) \subseteq \operatorname{co}(B)$.

Corollary 2. Let B be a finite collection of polynomials on $[0,1]$ having pairwise distinct degrees ≥ 1. Then the set $M=\cap_{y \in B} A_{y}$ is almost $A P$.

The following example shows the existence of a countable set B such that $\cap_{y \in B} A_{y}$ is almost AP.

Example. The set $B=\left\{2 \frac{1}{4}+\frac{3 t}{4 \pi}, 2 \pm \cos n t, 2 \pm \sin n t, n \in \mathbb{N}, t \in[-\pi, \pi]\right\}$ satisfies the conditions of Theorem 4.4 for the spaces $X=L_{1}^{+}([-\pi, \pi])$ and $Y^{+}=L_{\infty}^{+}([-\pi, \pi])$, and the set $M=\left\{x \in L_{1}[-\pi, \pi]:|\langle x, y\rangle| \leq 1 \quad \forall y \in B\right\}$ is almost $A P$.

Indeed, the set B satisfies condition (i) by construction. We show that condition (ii) holds.

Denote $b_{0}=2 \frac{1}{4}+\frac{3 t}{4 \pi}$. Choose $x \in \Sigma_{0}(\pi(A))$ and find $\varepsilon>0$ such that the set $B_{x}=\{b \in$ $B:\langle x, b\rangle>1-\varepsilon\}$ is finite and $\mu(\{t \in[-\pi, \pi]: y(t)=\alpha\})=0$ for any $y \in \operatorname{co}\left(B_{x}\right)$ and $\alpha \in \mathbb{R}$. First we consider the case when $x=$ const $=C>0$ a. e. on $[-\pi, \pi]$. It is easy to show that $\langle x, b\rangle=\int_{-\pi}^{\pi} b x d \mu=4 \pi C$ for any $b \in B, b \neq b_{0}$ and $\left\langle x, b_{0}\right\rangle=\int_{-\pi}^{\pi} b_{0} x d \mu=4,5 \pi C$. Since $x \in \Sigma_{0}(\pi(A))$, one has that $\left\langle x, b_{0}\right\rangle=4.5 \pi C \leq 1$, and hence, $C \leq \frac{1}{4.5 \pi}$. Then $\langle x, b\rangle \leq \frac{8}{9}$ for each $b \in B, b \neq b_{0}$.

Put $\varepsilon=\frac{1}{9}$. Then $\{b \in B:\langle x, b\rangle>1-\varepsilon\}=\left\{b \in B:\langle x, b\rangle>\frac{8}{9}\right\}=\left\{b_{0}\right\}$, i.e. the set E is finite. Obviously, $\operatorname{co}\left(B_{x}\right)=\left\{b_{0}\right\}$ and $\mu\left(\left\{t \in[-\pi, \pi]: b_{0}(t)=\alpha\right\}\right)=0$ for each $\alpha \in \mathbb{R}$.

Now suppose $x \neq$ const on $[-\pi, \pi]$ (up to sets of zero measure). Then the set $\{n \in$ $\mathbb{N}: a_{n}=\int_{-\pi}^{\pi} x(t) \sin n t d \mu \neq 0$ or $\left.b_{n}=\int_{-\pi}^{\pi} x(t) \cos n t d \mu \neq 0\right\}$ is non-empty ([11, p.270]), moreover $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0$ ([11, p.260]).

Denote $\alpha=\sup \left\{\left|a_{n}\right|,\left|b_{n}\right|: n \in \mathbb{N}\right\}$. Obviously, $\alpha>0$ and the sets $N_{1}=\left\{n \in \mathbb{N}: a_{n}>\frac{\alpha}{2}\right\}$, $N_{2}=\left\{n \in \mathbb{N}:-a_{n}>\frac{\alpha}{2}\right\}, N_{3}=\left\{n \in \mathbb{N}: b_{n}>\frac{\alpha}{2}\right\}$ and $N_{4}=\left\{n \in \mathbb{N}:-b_{n}>\frac{\alpha}{2}\right\}$ are finite because $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=0$. Now we set $\tilde{B}=\left\{2+\cos n t: n \in N_{1}\right\} \cup\{2-\cos n t: n \in$ $\left.N_{2}\right\} \cup\left\{2+\sin n t: n \in N_{3}\right\} \cup\left\{2-\sin n t: n \in N_{4}\right\} \cup\left\{b_{0}\right\}$. Note that \tilde{B} is finite. Besides, $1=\sup _{b \in B} \int_{-\pi}^{\pi} b x d \mu \geq 2 \int_{-\pi}^{\pi} x d \mu+\alpha$ and for each $b \in B \backslash \tilde{B}$ we have $\int_{-\pi}^{\pi} b x d \mu \leq 2 \int_{-\pi}^{\pi} x d \mu+\frac{\alpha}{2} \leq$ $1-\frac{\alpha}{2}$. Putting $\varepsilon=\frac{\alpha}{3}$, we obtain that the set $\left\{b \in B:\langle x, b\rangle \geq \int_{-\pi}^{\pi} b x d \mu-\varepsilon\right\} \subseteq \tilde{B}$ is finite. Since $N_{1} \cap N_{2}=N_{3} \cap N_{4}=\varnothing$, each function $y \in \operatorname{co}(\tilde{B})$ is rearrange monotone. Thus, condition (ii) of Theorem 1 holds.

Thus, by Theorem 1 the set $M=\left\{x \in L_{1}:|x| \in \pi(B)\right\}$ is almost AP, moreover, $\Sigma_{\max }(A) \subseteq \operatorname{co}(B)$.

Note that for the given examples of almost AP-sets $M=\cap_{y \in B} A_{y}$ the condition $\Sigma_{\max }(A) \subseteq \operatorname{co}(B)$ holds, where B is, at most, a countable set. The following theorem shows that constructed in such a way sets are not AP-set.
Theorem 2. Let $A \subseteq X$ be a closed bounded convex set, $B \subseteq \pi(A)$, let $\pi(A)$ be a norm bounded subset of L_{1} and let B be, at most, a countable set such that $\Sigma_{\max }(A) \subseteq \operatorname{co}(B)$. Then the set $M=\left\{x \in L_{1}:|x| \in \pi(B)\right\}$ is not $A P$.
Proof. We set $B_{0}=B \cap \Sigma_{\max }(A)$ and show that $\Sigma_{\max }(A) \subseteq \operatorname{co}\left(B_{0}\right)$.
Assume $y_{0} \in \Sigma_{\max }(A)$. By the theorem conditions, there exist $n \in \mathbb{N}, b_{1}, \ldots, b_{n} \in B$ and $\alpha_{1}, \ldots, \alpha_{n} \in(0,1]$ such that $\alpha_{1}+\ldots+\alpha_{n}=1$ and $y_{0}=\alpha_{1} b_{1}+\ldots+\alpha_{n} b_{n}$. Choose $x_{0} \in A$ so that $\left\langle x_{0}, y_{0}\right\rangle=1$. Since $b_{1}, \ldots, b_{n} \in \pi(A)$, we have that $\left\langle x_{0}, b_{i}\right\rangle \leq 1$ for $1 \leq i \leq n$. Now we show that $\left\langle x_{0}, b_{i}\right\rangle=1$ for $1 \leq i \leq n$. Suppose, on the contrary, that $\left\langle x_{0}, b_{j}\right\rangle<1$ for some $1 \leq j \leq n$. Since $\alpha_{j}>0$, we obtain that

$$
\left\langle x_{0}, y_{0}\right\rangle=\sum_{i=1}^{n} \alpha_{i}\left\langle x_{0}, b_{i}\right\rangle<\sum_{i=1}^{n} \alpha_{i}=1
$$

which contradicts the choice of $\alpha_{1}, \ldots, \alpha_{n}$.
Besides, $\left\langle x, b_{i}\right\rangle \leq 1$ for each $x \in A$. Then $b_{1}, \ldots, b_{n} \in \Sigma_{0}(A)$. Since $\alpha_{1}, \ldots, \alpha_{n}>0$ and $y_{0}=\sum_{i=1}^{n} \alpha_{i} b_{i} \in \Sigma_{\max }(A)$, we have that $b_{1}, \ldots, b_{n} \in \Sigma_{\max }(A)$. Thus, $b_{1}, \ldots, b_{n} \in B_{0}$ and $y_{0} \in \operatorname{co}\left(B_{0}\right)$.

Observe that each functional $y \in B_{0}$ has the maximum value 1 on M. Thus, if $B_{0} \cap \Sigma_{0} \neq \varnothing$, where Σ_{0} is the set of support functionals on unit ball, then M is not AP. It remains to consider the case $B_{0} \cap \Sigma_{0}=\varnothing$. Let $B_{0}=\left\{y_{n}: n \in \mathbb{N}\right\}$. Since $b_{n} \notin \Sigma_{0}$ for each $n \in \mathbb{N}$, we can choose $\delta_{n}>0$ so that $\mu\left(T_{n}\right)=\mu\left(\left\{t \in[0,1]: y_{n}(t)>\left\|y_{n}\right\|-\delta_{n}\right\}\right)<\frac{1}{4^{n}}$ and put $S=[0,1] \backslash\left(\cup_{n=1}^{\infty} T_{n}\right)$. Obviously, $\mu(S)>0$ and $C=\left\{\left.x\right|_{S}: x \in M\right\}$ is a closed bounded convex set in the Banach space $L_{1}(S)$. By the Bishop-Phelps theorem [3], there exist functions $u_{0} \in C$ and $v_{0} \in L_{\infty}(S)$ such that $1=\int_{S} u_{0} v_{0} d \mu=\max _{u \in C} \int_{S} u v_{0} d \mu$.

Consider the functions $y_{0} \in Y$ and $x_{0} \in X$

$$
y_{0}(t)=\left\{\begin{array}{ll}
\left|v_{0}(t)\right|, & t \in S, \\
0, & t \notin S,
\end{array} \quad x_{0}(t)= \begin{cases}\left|u_{0}(t)\right|, & t \in S, \\
0, & t \notin S .\end{cases}\right.
$$

Note that $x_{0} \in A$ and $y_{0} \in \Sigma_{0}(A)$. Since $\pi(A)$ is norm bounded in L_{1}, so is $\Sigma_{0}(A)$, and by Proposition 10 , there exist $\tilde{y} \in \Sigma_{\max }(A)$ such that $y_{0} \leq \tilde{y}$. Thus, there exist $\tilde{y}_{1}, \ldots, \tilde{y}_{n} \in B_{0}$ and $\alpha_{1}, \ldots, \alpha_{n}>0$ such that $\sum_{i=1}^{n} \alpha_{i}=1$ and $\tilde{y}=\sum_{i=1}^{n} \alpha_{i} \tilde{y}_{i}$.

Let $\tilde{y}_{1}=y_{k}$. Note that $\left\langle x_{0}, y_{k}\right\rangle=1$. Consider the function $y^{*} \in L_{\infty}$,

$$
y^{*}(t)= \begin{cases}y_{k}(t), & t \in[0,1] \backslash T_{k}, \\ \left\|y_{k}\right\|-\delta_{k}, & t \in T_{k}\end{cases}
$$

which obviously belongs to Σ_{0}. We have

$$
\int_{0}^{1} y^{*} x_{0} d \mu=\int_{S} y^{*} x_{0} d \mu=\int_{S} y_{k} x_{0} d \mu=1 .
$$

On the other hand, for each $x \in M$ we have $\left|\left\langle x, y^{*}\right\rangle\right| \leq\langle | x\left|, y^{*}\right\rangle \leq\langle | x\left|, y_{n}\right\rangle \leq 1$. Thus, $y^{*} \in \Sigma(M) \cap \Sigma_{0}$ and M is not AP-set.

REFERENCES

1. Edelstein M., Thompson A.C. Some results on nearest points and support properties of convex sets in $c_{0} / /$ Pacific J. Math. - 1972. - V.40. - P. 553-560.
2. Bishop E., Phelps R.R. A proof that every Banach space is subreflexive// Bull. Amer. Math. Soc. - 1961. - V.67. - P. 97-98.
3. Bishop E., Phelps R.R. Support functionals of convex sets// Proc.Simposia in Pure Math. (Convexity) Amer. Math. Soc. - 1963. - V.7. - P. 27-35.
4. Klee V. Remarks on nearest points in normed linear spaces// Proc. Colloquium on Convexity, Copenhagen. - 1965. - P. 168-176.
5. Cobzaş S. Antiproximinal sets in the spaces c_{0} and $c / /$ Math. Notes. - 1975. - V.17. - P. 449-457.
6. Fonf V.P. On antiproximinal sets in spaces of continuous functions on compacta// Mat. Zametki. - 1983. - V.33, №4. - P. 549-558. (in Russian)
7. Balaganskii V.S. Antiproximinal sets in the space of continuous functions// Math. Notes. - 1996. - V.60, №5. - P. 485-494.
8. Kantorovich L.V., Akilov G.P. Functional analysis. - Moscow: Nauka, 1984. - 752p. (in Russian)
9. Schaefer H. Topological vector spaces. - Moscow: Mir, 1971. - 359p. (in Russian)
10. Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis. - Moscow: Nauka, 1976. - 544p. (in Russian)
11. Natanson I.P. Theory of functions of real variable. - Moscow: Nauka, 1974. - 480p. (in Russian)
12. Martínez-Abejón A., Odell E., Popov M.M. Some open problems on the classical function space $L_{1} / /$ Mat. Stud. - 2005. - V.24, №2. - P. 173-191.

Jurii Fedkovych Chernivtsy National University, Department of mathematical analysis

