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We introduce a notion of almost antiproximinality of sets in the space L1 which is a weaken-
ing of the notion of antiproximinality. Also we investigate properties of almost antiproximinal
sets and establish a method of construction of almost antiproximinal sets.

В. А. Холоменюк, В. В. Михайлюк. Почти антипроксиминальные множества в про-
странстве L1 // Мат. Студiї. – 2011. – Т.35, №2. – C.172–180.

В пространстве L1 вводится понятие почти антипроксиминальности множеств, кото-
рое является ослаблением понятия антипроксиминальности. Исследуются свойства почти
антипроксиминальных множеств и устанавливается метод построения почти антипрокси-
минальных множеств.

1. Introduction. By d(x,M) we denote the distance inf{‖x − y‖ : y ∈ M} between an
element x of a normed space X and a non-empty set M ⊆ X. An element y ∈ M is called
the nearest point to x if ‖x − y‖ = d(x,M). The set of all nearest points to a point x in a
set M is denoted by PM(x).

A set M is called an antiproximinal (AP) set if PM(x) = ∅ for each x ∈ X \M .
Let X∗ be the Banach space conjugate to X. A functional f ∈ X∗ attains supremum on

M ⊆ X if there exists an element x ∈ M such that f(x) = sup f(M). By Σ(M) we denote
the set of all functionals which attain supremum on M , i.e.

Σ(M) = {f ∈ X∗ : ∃x ∈M | f(x) = sup f(M)}.

LetX be a normed space, x0 ∈ X\{0}. A functional f0 ∈ X∗ is called a support functional
in x0 if ‖f0‖ = 1 and f0(x0) = ‖x0‖.

M. Edelstein and A. Thompson in [1] showed that a bounded closed convex subset A of
Banach space X is AP if and only if each non-zero support functional of the set A does not
attain maximum on the closed unit ball B of X, i.e. Σ(A) ∩ Σ(B) = {0}.

In 1961 E. Bishop and P. Phelps proved that each Banach space is subreflexive, i.e. the
set of functionals which attain their maximum at unit ball is dense in this space [2], and in
1963 they generalized this result to the case of convex sets (see [3]).

Plenty of mathematicians have worked on the problem of the existence of non-empty
closed convex bounded AP-sets in Banach spaces. In particular, it is proved in [1]–[7] that
such sets exist in the spaces c0, c, L∞, C(X) (with some especial conditions on X).

Besides, V. Klee showed in [4] that a Banach space X contains a non-empty closed convex
(not obligatory bounded) AP-set if and only if X is not reflexive.
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In connection with these facts, the following question on the existence of non-empty
closed convex bounded AP-sets in L1 was naturally risen by professor V. Fonf (see [12]).

Question. Do there exist non-empty closed convex bounded AP-sets in L1?

Note that the example of radially bounded (i.e. bounded in each direction) AP-set M in
L1 was constructed in [7], but this set M is not bounded.

In this paper we introduce some weakening of the notion of antiproximinality which we
call almost antiproximinality, and investigate properties of closed convex bounded almost
AP-sets in L1.

2. Definition of almost AP-set in L1, examples. By L1 and L∞ we denote the spaces
L1[0, 1] and L∞[0, 1] respectively. The space L∞ we identify with the space L∗1 and denote
y(x) = 〈x, y〉 =

∫ 1

0
y(t)x(t)dµ. Furthermore, for a set A ⊆ L1, the sets {y ∈ L∞ : 〈x, y〉 ≤

1 ∀x ∈ A} and {y ∈ L∞ : |〈x, y〉| ≤ 1 ∀x ∈ A} are called the polar and the absolute polar
of the set A respectively. The polar and the absolute polar of a set B ⊆ L∞ are introduced
similarly.

It is easily seen that the set Σ(B) of all support functionals at the unit ballB of L1 consists
of all y ∈ L∞ such that µ({t ∈ [0, 1] : |y(t)| = ‖y‖}) > 0. The most obvious examples of
non-zero functionals y ∈ Σ(B) are so-called signs, i.e. such y ∈ L∞ that |y| = χ

T
, where χ

T

is the characteristic function of a measurable set T ⊆ [0, 1] having positive measure.
According to the characterization of AP-sets obtained by M. Edelstein and A. Thompson,

the next notion is a natural weakening of the conception of antiproximinality in L1.

Definition 1. A set A ⊆ L1 is called almost antiproximinal (almost AP) if for each set
T ⊆ [0, 1] of positive measure any functional y ∈ L∞ such that |y| = χ

T
does not attain

supremum on A.

Suppose that a set A ⊆ L1 has the following property: x ∈ A if and only if |x| ∈ A. Then
almost antiproximinality of A is equivalent to the fact that χ

T
/∈ Σ(A) for each measurable

set T ⊆ [0, 1] having positive measure. (Indeed, if a sign attains supremum on a set T ⊆ [0, 1]
at some point x ∈ A, then χ

T
attains supremum at |x| ∈ A).

We denote Ay = {x ∈ L1 :
∫ 1

0
|xy|dµ ≤ 1} for any function y ∈ L∞.

Definition 2. A measurable function y : [0, 1]→ R is called rearrange monotone if for each
α ∈ R the set {t ∈ [0, 1] : y(t) = α} has measure zero.

Proposition 1. Let y ∈ L∞ be rearrange monotone. Then the set M = Ay is an almost
AP-set, but is not an AP-set.

Proof. Let T ⊆ [0, 1] and µ(T ) > 0. Denote m = sup
µ(F )=0

inf
t∈T\F

|y(t)|.

We will prove that α = supx∈M
∫ 1

0
|x|χ

T
dµ ≥ 1

m
.

Fix ε > 0. The set S = {t ∈ T : m ≤ |y(t)| ≤ m+ ε} has non-zero measure. Consider the
function x = 1

(m+ε)µ(S)
· χ

S
. Since∫ 1

0

|xy|dµ ≤ 1

(m+ ε)µ(S)
(m+ ε)

∫ 1

0

χ
S
dµ = 1,

one has that x ∈ M . So, α ≥
∫ 1

0
xdµ = 1

(m+ε)
. Tending ε to zero, we obtain that α ≥ 1

m
, in

particular α = +∞ if m = 0.
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It remains to show that
∫ 1

0
|x|χ

T
dµ < 1

m
for each x ∈ M (so it will be proved that

χ
T
/∈ Σ(M)).
Fix x ∈ M and put T1 = {t ∈ T : |x(t)| > 0}. If µ(T1) = 0 then

∫ 1

0
|x|χ

T
dµ = 0 < 1

m
.

Suppose now µ(T1) > 0. Since the set {t ∈ [0, 1] : |y(t)| = m} has zero measure, without loss
of generality we can assume that |y(t)| > m for each t ∈ T1. Then m|x(t)| < |x(t)y(t)| for
each t ∈ T1 and

m

∫ 1

0

|x|χ
T
dµ = m

∫
T1

|x|χ
T
dµ <

∫
T1

|xy|dµ ≤
∫ 1

0

|xy|dµ ≤ 1.

So,
∫ 1

0
|x|χ

T
dµ < 1

m
and M is an almost AP-set.

Now we will prove that M is not an AP-set. Assume a = essinf |y|, c = esssup |y| and
b = a+c

2
. Since y is rearrange monotone, a < c and the sets S = {t ∈ [0, 1] : |y(t)| ∈ (a, b)}

and T = {t ∈ [0, 1] : |y(t)| ∈ (b, c)} have measure greater than zero.
Consider the functions y0 : [0, 1]→ R and x0 : [0, 1]→ R

y0(t) =


|y(t)|, t ∈ S,
b, t ∈ T,
0, t /∈ T ∪ S,

x0(t) =

{
1

|y(t)|µ(S) , t ∈ S,
0, t /∈ S.

Since |y0| ≤ |y|, we have that
∫ 1

0
xy0dµ ≤ 1 for each x ∈ A.

On the other hand,
∫ 1

0
|x0y|dµ =

∫
S
|x0y|dµ = 1 =

∫ 1

0
|x0y0|dµ. So y0 ∈ Σ(M) ∩ Σ(B1)

which means that M is not an AP-set.

Proposition 2. Intersection of two almost AP-sets in L1 need not be an AP-set.

Proof. Let y1(t) = 1 + t, y2(t) = 2− t,

A1 =
{
x ∈ L1 :

∫ 1

0

|x|y1dµ ≤ 1
}
, A2 =

{
x ∈ L1 :

∫ 1

0

|x|y2dµ ≤ 1
}

and A = A1 ∩ A2. By Proposition 1, the sets A1 and A2 are almost AP-sets.
Consider the functions y0 = χ

[0,1]
and x0 = 2

3
χ

[0,1]
∈ A. Note that y0 = 1

3
(y1 + y2). Now

for each x ∈ A we have∫ 1

0

xy0dµ =
1

3

(∫ 1

0

xy1dµ+

∫ 1

0

xy2dµ
)
≤ 2

3
=

∫ 1

0

x0y0dµ.

Thus, y0 ∈ Σ(A).

A set A of measurable functions on [0, 1] is called solid if for any measurable functions
x1 and x2 the condition |x1| ≤ |x2| ∈ A implies that x1 ∈ A.
Proposition 3. Let M ⊆ L1 be a non-empty closed absolute convex bounded solid set and
B = Σ(M) ∩M o ∩ L+

∞, where M o is the absolute polar of the set M . Then M = ∩y∈BAy.
Proof. Note that the absolute polar M o and the set Σ(M) are solid and Ay1 = Ay2 if
|y1| = |y2|. So, ∩y∈BAy = ∩y∈CAy, where C = Σ(M) ∩M o.

According to [3], the set Σ(M) is norm dense in L∞. We show that C is dense in M o.
Assume to the contrary that there exist ε > 0, y ∈ M o, (yn)∞n=1, yn ∈ Σ(M), (xn)∞n=1,
xn ∈M , such that lim

n→∞
yn = y and |yn(xn)| > 1 + ε for any n ∈ N. Using boundedness of M ,

we choose n ∈ N such that ‖(yn − y)(xn)‖ < ε
2
. Then |y(xn)| > 1 + ε

2
, which is impossible.

Moreover, C is solid, so ∩y∈BAy = ∩y∈CAy = Co = (Coo)o = M oo = M.
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In connection with Propositions 2 and 3 the following question naturally arises.

Question. For which sets B ⊆ L∞ the set M = ∩y∈BAy is an almost AP-set?

3. Positive polars in L1 and L∞, and their properties. Let

X = L+
1 = {x ∈ L1 : x(t) ≥ 0 almost everywhere (a.e.) on [0, 1]}

and Y = {y ∈ L+
∞ : y(t) ≥ 0 a.e. on [0, 1]}. Denote by σ(X, Y ) the weakest topology on X

such that for each y ∈ Y the function fy : X → R, fy(x) =
∫ 1

0
xydµ, is continuous. Similarly,

by σ(Y,X) we denote the weakest topology on Y such that for each x ∈ X the function
fx : Y → R, fx(y) =

∫ 1

0
xydµ, is continuous. We will shortly denote by σ the topologies

σ(X, Y ) and σ(Y,X).

Proposition 4. The topology σ coincides with the restriction of the weak topology w of L1

on X.

Proof. Obviously, the restriction of w onX is stronger than σ. So, it remains to prove that for
any x0 ∈ X and weak neighborhood U of the point x0 in L1 the set U∩X is a σ-neighborhood
of the point x0 in X. It is sufficient to consider the case U = {x ∈ L1 : |〈x− x0, y〉| ≤ 1},
where y ∈ L∞ is fixed.

We denote A = {t ∈ [0, 1] : y(t) ≥ 0} and B = {t ∈ [0, 1] : y(t) < 0}. Put y1 = yχ
A
,

y2 = −yχ
B
, U1 = {x ∈ X : |〈x− x0, y1〉| ≤ 1

2
} and U2 = {x ∈ X : |〈x− x0, y2〉| ≤ 1

2
}. It is

clear that y1, y2 ∈ Y , U1, U2 are σ-neighborhoods of x0 ∈ X, moreover U1 ∩U2 ⊆ U ∩X. So,
U ∩X is a σ-neighborhood of the point x0.

The following proposition can be proved similarly.

Proposition 5. Topology σ coincides with the restriction of the weak∗ topology w∗ of L∞
on Y .

Given non-empty sets A ⊆ X and B ⊆ Y , the sets

π(A) = {y ∈ Y : 〈x, y〉 ≤ 1 ∀x ∈ A} and π(B) = {x ∈ X : 〈x, y〉 ≤ 1 ∀y ∈ B}

are called the positive polars of the sets A and B respectively.
For any y1, y2 ∈ Y we denote [y1, y2] = {y ∈ Y : y1 ≤ y ≤ y2}.

Proposition 6. Let A ⊆ X be a neighborhood of zero in X. Then π(A) is σ-compact in Y ,
in particular, for each y ∈ Y the set [0, y] is σ-compact.

Proof. Note that the set Ã = {x ∈ L1 : |x| ∈ A} is a neighborhood of zero in L1. Let
B = π(A) and B̃ = Ão be the absolute polar of Ã with respect to the duality 〈L1, L∞〉 .

Now we show that y ∈ B̃ if and only if |y| ∈ B.
Let y ∈ B̃ and x ∈ A be arbitrary elements. Consider the element x′ ∈ L1, which is

defined in the following way:

x′(t) =

{
x(t), y(t) ≥ 0,

−x(t), y(t) < 0.

Obviously, x′ ∈ Ã and x′(t)y(t) = x(t)|y(t)| on [0, 1]. Then
∣∣∣∫ 1

0
x|y|dµ

∣∣∣ =
∣∣∣∫ 1

0
x′ydµ

∣∣∣ ≤ 1. So,
|y| ∈ B.
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Conversely, let y ∈ L∞ be such that |y| ∈ B and let x ∈ Ã be an arbitrary element. Then
|x| ≤ x′ and

∣∣∣∫ 1

0
xydµ

∣∣∣ ≤ ∣∣∣∫ 1

0
|x||y|dµ

∣∣∣ ≤ 1. Hence, y ∈ B̃ if and only if |y| ∈ B, in particular,

B = B̃∩Y . According to the Alaouglu-Burbaki theorem [8, p.117], the set B̃ is w∗-compact.
Now using Proposition 3, the equality B = B̃ ∩ Y and w∗-closeness of Y in L∞, we obtain
that B is σ-compact in Y .

Proposition 7. For any non-empty set B ⊆ Y the positive bipolar π(π(B)) is the σ-closed
convex hull of the set ∪b∈B[0, b].

Proof. Denote D = co(∪b∈B[0, b]) and C = D̄σ. Obviously, C ⊆ π(π(B)). Besides, B ⊆ D,
therefore π(π(B)) ⊆ π(π(D)). Now it is sufficient to prove that π(π(D)) = C.

We set Do = {x ∈ L1 : 〈x, y〉 ≤ 1 ∀y ∈ D}. Note that for any y ∈ D and a measurable
set A ⊆ [0, 1] we have y · χ

A
∈ D.

For any x ∈ L1 denote x+ = x · χ
A
, where A = {t ∈ [0, 1] : x(t) > 0}. Now we show that

x ∈ Do if and only if x+ ∈ Do, i.e. x+ ∈ π(π(D)). Note that
∫ 1

0
xydµ ≤

∫ 1

0
x+ydµ for each

y ∈ Y , therefore x ∈ Do if x+ ∈ Do.
Let x ∈ Do, y ∈ D and A = {t ∈ [0, 1] : x(t) > 0}. Then y · χ

A
∈ D and

∫ 1

0
x+ydµ =∫ 1

0
xyχ

A
dµ ≤ 1. Thus, x+ ∈ Do.

Consider the set Doo = {y ∈ L∞ : 〈x, y〉 ≤ 1 ∀x ∈ Do}. We prove that Doo = π(π(D)).
First we will show that Doo ⊆ Y . Assume y ∈ L∞, A = {t ∈ [0, 1] : y(t) < 0} and

µ(A) > 0. Choose x ∈ X such that {t ∈ [0, 1] : x(t) > 0} ⊆ A and
∫ 1

0
xydµ < −1. Then

z = −x ∈ Do as z+ = 0 ∈ π(D), and
∫ 1

0
zydµ = −

∫ 1

0
xydµ > 1. Thus, y /∈ Doo.

Since for each y ∈ Y , we have
∫ 1

0
xydµ ≤

∫ 1

0
x+ydµ,

Doo =
{
y ∈ Y :

∫ 1

0

xydµ ≤ 1 ∀x ∈ Do
}

=
{
y ∈ Y :

∫ 1

0

x+ydµ ≤ 1 ∀x ∈ Do
}

=

=
{
y ∈ Y :

∫ 1

0

xydµ ≤ 1 ∀x ∈ π(D)
}

= π(π(D)).

Now by the bipolar theorem [9, p.160] and by Proposition 5 we have π(π(D)) = Doo =
D̄w∗ = D̄σ = C.

Proposition 8. Let B = B1 ∪B2 ⊆ Y , and let B be norm bounded. Then

co(
⋃
b∈B

[0, b]) = co

(
co(
⋃
b∈B1

[0, b]) ∪ co(
⋃
b∈B2

[0, b])

)
,

where closures are taken in the σ-topology.

Proof. Denote A1 = co(∪b∈B1 [0, b]), A2 = co(∪b∈B2 [0, b]) and A = co(∪b∈B[0, b]). Obviously,
co(A1 ∪ A2) ⊆ A.

Now we show that A ⊆ co(A1∪A2). Note that A ⊆ co(A1∪A2). Therefore, it is sufficient
to prove that the set co(A1 ∪ A2) is closed.

By Proposition 7, we have A1 = π(π(B1)) and A2 = π(π(B2)). Moreover, the norm
boundedness of the sets B1 and B2 together with Proposition 6 imply that the sets A1 and
A2 are σ-compact.

Consider the following continuous mapping ϕ : [0, 1]2 × Y 2 → Y , ϕ(λ, µ, y1, y2) = λy1 +
µy2. The set S = {(λ, µ) ∈ [0, 1]2 : λ + µ = 1} is compact in [0, 1]2. Hence, the set co(A1 ∪
A2) = {λx1 + µx2 : x1 ∈ A1, x2 ∈ A2} = ϕ(S ×A1×A2) is compact as the continuous image
of a compact set. Then co(A1 ∪ A2) is closed.
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Proposition 9. Let measurable functions x, y, z be such that y ≤ z and
∫ 1

0
xzdµ ≤

∫ 1

0
xydµ.

Then y = z a.e. at T = {t ∈ [0, 1] : x(t) > 0}.

4. Support functionals at X and Y . For each set A ⊆ X = L+
1 by Σ(A) we denote the

set of all y ∈ Y = L+
∞ such that maxx∈A〈x, y〉 exists. By Σ0(A) we denote the set of all

y ∈ Y = L+
∞ such that maxx∈A〈x, y〉 = 1, and by Σmax(A) denote the set of all maximal

elements of Σ0(A). Given any set B ⊆ Y , by Σ0(B) we denote the set of all x ∈ X = L+
1 such

that maxy∈B〈x, y〉 = 1, and by Σmax(B) denote the set of all maximal elements of Σ0(B).

Proposition 10. Let A ⊆ X be such that Σ0(A) is norm bounded in L1. Then for each
y ∈ Σ0(A) there exists y′ ∈ Σmax(A) such that y ≤ y′.

Proof. Suppose the contrary. Then by the Levi theorem [10, p.299], we can construct a stri-
ctly increasing transfinite sequence (yξ) : ξ < ω1 of functions yξ ∈ Σ0(A), where ω1 is the
first uncountable ordinal. Then

∫ 1

0
yξdµ <

∫ 1

0
yηdµ for 1 ≤ ξ < η < ω1 and the transfinite

sequence of numbers aξ =
∫ 1

0
yξdµ is strictly increasing, which is impossible.

Proposition 11. Let M ⊆ L1 be a closed absolute convex bounded solid neighborhood of
zero, A = M ∩X and D = Σmax(A). Then M = ∩y∈DAy.

Proof. By Proposition 3, we haveM = ∩y∈CAy, where C = Σ(A)∩π(A). Obviously, D ⊆ C.
Note that for each y ∈ C there exists y′ ∈ Σ0(A) such that y ≤ y′. Since B = Σ0(A) ⊆ π(A)
and A is neighborhood of zero in X, Σ0(A) is norm bounded in L∞, and so, it is also norm
bounded in L1. Then by Proposition 10, for each y′ ∈ Σ0(A) there exists y′′ ∈ Σmax(A) such
that y′ ≤ y′′. Thus, for each y ∈ C there exists y′′ ∈ D such that y ≤ y′′, in particular,
Ay ⊇ Ay′′ . Then M = ∩y∈CAy = ∩y∈DAy.

Proposition 12. Let a set A ⊆ X be such that Σ0(A) is a norm bounded non-empty set in L1

and all functions y ∈ Σmax(A) are rearrange monotone. Then the setM = {x ∈ L1 : |x| ∈ A}
is an almost AP-set.

Proof. Suppose the contrary. Then there exists a measurable set T ⊆ [0, 1] with µ(T ) > 0
such that α = max

x∈M

∫
T
xdµ exists. Note that α 6= 0. Indeed, if α = 0, then xχ

T
= 0 for each

x ∈ A. Now for any y1 ∈ Σ0(A) and C > 0 we have y1 + Cχ
T
∈ Σ0(A), which contradicts

the boundedness of Σ0(A).
Since the set M is balanced, α > 0. Consider the function y0 = 1

α
χ

T
. Then y0 ∈ Y and

max
x∈M
〈x, y0〉 = max

x∈A
〈x, y0〉 = 1. So, y0 ∈ Σ0(A).

Then there exists x0 ∈ A such that 〈x0, y0〉 = 1. By Proposition 10, there exists y1 ∈
Σmax(A) such that y0 ≤ y1. Besides, 〈x0, y0〉 = 〈x0, y1〉 = 1. By Proposition 9, y0 = y1 on the
set S = {t ∈ [0, 1] : x0(t) > 0}. Now since 〈x0, y0〉 = 1, we obtain that µ(S ∩ T ) > 0. Hence,
y1(t) = 1

α
for each t ∈ S ∩ T , which contradicts the conditions of the proposition, because

y1 ∈ Σmax(A) is rearrange monotone.

Theorem 1. Let B ⊆ Y , A = π(B) and the following conditions hold:

(i) the set B is norm bounded in L1;

(ii) for each x ∈ Σ0(π(A)) there exists ε > 0 such that the set Bx = {y ∈ B : 〈x, y〉 ≥ 1−ε}
is finite and each y ∈ co(Bx) is rearrange monotone.

Then the set M =
⋂
y∈B

Ay is almost AP.



178 V. A. KHOLOMENYUK, V. V. MYKHAYLYUK

Proof. We show that A satisfies the conditions of Proposition 12. Note that by (i), the set
B̃ = π(A) = π2(B) = co(∪b∈B[0, b]) is norm bounded.

Let y0 ∈ Σmax(A) and x0 ∈ A be such that 〈x0, y0〉 = 1. Obviously, y0 ∈ B̃ = π(A) =
{y ∈ Y : 〈x, y〉 ≤ 1 ∀x ∈ A}. Besides, since x0 ∈ A, one has that 〈x0, y〉 ≤ 1 = 〈x0, y0〉 for
any y ∈ B̃. So x0 ∈ Σ0(B̃). Using condition (ii), we choose ε > 0 so that set B1 = {y ∈
B : 〈x0, y〉 ≥ 1 − ε} is bounded and each y ∈ co(B1) is rearrange monotone. Then we put
B2 = B \B1.

Note that by the σ-compactness of [0, y], finiteness of B1 and Propositions 7 and 8 we
have that

B̃ = co(
⋃
b∈B

[0, b]) = co
(

co(
⋃
b∈B1

[0, b]) ∪ co(
⋃
b∈B2

[0, b])
)
.

Denote C1 = co(∪b∈B1 [0, b]) and C2 = co(∪b∈B2 [0, b]). Choose y1 ∈ C1, y2 ∈ C2, α1, α2 ∈ [0, 1]
with α1 + α2 = 1 such that y0 = α1y1 + α2y2. Remind that 〈x0, y〉 ≤ 1 for any y ∈ B̃ and
〈x0, y〉 ≤ 1− ε for each y ∈ C2. Now we obtain

1 = 〈x0, y0〉 = α1〈x0, y1〉+ α2〈x0, y2〉 ≤ α1 + α2(1− ε) = 1− α2ε.

So α2 = 0 and y0 ∈ C1, i.e. y0 =
∑
b∈B1

αbyb, where αb ≥ 0 and
∑
b∈B1

αb = 1, and yb ∈ [0, b] for

each b ∈ B1.
We set y∗ =

∑
b∈B1

αbb and show that y0 = y∗. Firstly observe that y0 ≤ y∗ as yb ≤ b
for any b ∈ B1. On the other hand, since 〈x0, y∗〉 ≥ 〈x0, y〉 = 1 and y∗ ∈ π(A), we obtain
〈x0, y∗〉 = maxx∈A〈x, y∗〉 = 1. Hence, y∗ ∈ Σ0(A). Then y0 ∈ Σmax(A) yields y0 = y∗ =∑

b∈B1
αbb ∈ co(B1). Therefore, y0 is rearrange monotone, according to the choice of B1.

Thus, A satisfies the conditions of Proposition 12, and M is an almost AP-set.

Corollary 1. Let B ⊆ Y be a finite set such that all functions y ∈ co(B) are rearrange
monotone. Then the set M = ∩y∈BAy is almost AP.

Proof. Denote A = π(B), D = π(π(B)). The set D satisfies the conditions of Theorem 1 as
Σmax(A) ⊆ co(B).

Corollary 2. Let B be a finite collection of polynomials on [0, 1] having pairwise distinct
degrees ≥ 1. Then the set M = ∩y∈BAy is almost AP.

The following example shows the existence of a countable set B such that ∩y∈BAy is
almost AP.

Example. The set B = {21
4

+ 3t
4π
, 2 ± cosnt, 2 ± sinnt, n ∈ N, t ∈ [−π, π]} satisfies the

conditions of Theorem 4.4 for the spaces X = L+
1 ([−π, π]) and Y + = L+

∞([−π, π]), and the
set M = {x ∈ L1[−π, π] : |〈x, y〉| ≤ 1 ∀y ∈ B} is almost AP.

Indeed, the set B satisfies condition (i) by construction. We show that condition (ii)
holds.

Denote b0 = 21
4

+ 3t
4π
. Choose x ∈ Σ0(π(A)) and find ε > 0 such that the set Bx = {b ∈

B : 〈x, b〉 > 1 − ε} is finite and µ({t ∈ [−π, π] : y(t) = α}) = 0 for any y ∈ co(Bx) and
α ∈ R. First we consider the case when x = const = C > 0 a. e. on [−π, π]. It is easy to
show that 〈x, b〉 =

∫ π
−π bxdµ = 4πC for any b ∈ B, b 6= b0 and 〈x, b0〉 =

∫ π
−π b0xdµ = 4, 5πC.

Since x ∈ Σ0(π(A)), one has that 〈x, b0〉 = 4.5πC ≤ 1, and hence, C ≤ 1
4.5π

. Then 〈x, b〉 ≤ 8
9

for each b ∈ B, b 6= b0.
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Put ε = 1
9
. Then {b ∈ B : 〈x, b〉 > 1 − ε} = {b ∈ B : 〈x, b〉 > 8

9
} = {b0}, i.e. the set E is

finite. Obviously, co(Bx) = {b0} and µ({t ∈ [−π, π] : b0(t) = α}) = 0 for each α ∈ R.
Now suppose x 6= const on [−π, π] (up to sets of zero measure). Then the set {n ∈

N : an =
∫ π
−π x(t) sinntdµ 6= 0 or bn =

∫ π
−π x(t) cosntdµ 6= 0} is non-empty ([11, p.270]),

moreover lim
n→∞

an = lim
n→∞

bn = 0 ([11, p.260]).
Denote α = sup{|an|, |bn| : n ∈ N}. Obviously, α > 0 and the sets N1 = {n ∈ N : an >

α
2
},

N2 = {n ∈ N : − an > α
2
}, N3 = {n ∈ N : bn >

α
2
} and N4 = {n ∈ N : − bn > α

2
} are finite

because lim
n→∞

an = lim
n→∞

bn = 0. Now we set B̃ = {2 + cosnt : n ∈ N1} ∪ {2 − cosnt : n ∈
N2} ∪ {2 + sinnt : n ∈ N3} ∪ {2 − sinnt : n ∈ N4} ∪ {b0}. Note that B̃ is finite. Besides,
1 = sup

b∈B

∫ π
−π bxdµ ≥ 2

∫ π
−π xdµ+α and for each b ∈ B\B̃ we have

∫ π
−π bxdµ ≤ 2

∫ π
−π xdµ+ α

2
≤

1 − α
2
. Putting ε = α

3
, we obtain that the set {b ∈ B : 〈x, b〉 ≥

∫ π
−π bxdµ − ε} ⊆ B̃ is finite.

Since N1 ∩ N2 = N3 ∩ N4 = ∅, each function y ∈ co(B̃) is rearrange monotone. Thus,
condition (ii) of Theorem 1 holds.

Thus, by Theorem 1 the set M = {x ∈ L1 : |x| ∈ π(B)} is almost AP, moreover,
Σmax(A) ⊆ co(B).

Note that for the given examples of almost AP-sets M = ∩y∈BAy the condition
Σmax(A) ⊆ co(B) holds, where B is, at most, a countable set. The following theorem shows
that constructed in such a way sets are not AP-set.
Theorem 2. Let A ⊆ X be a closed bounded convex set, B ⊆ π(A), let π(A) be a norm
bounded subset of L1 and let B be, at most, a countable set such that Σmax(A) ⊆ co(B).
Then the set M = {x ∈ L1 : |x| ∈ π(B)} is not AP.
Proof. We set B0 = B ∩ Σmax(A) and show that Σmax(A) ⊆ co(B0).

Assume y0 ∈ Σmax(A). By the theorem conditions, there exist n ∈ N, b1, ..., bn ∈ B and
α1, ..., αn ∈ (0, 1] such that α1 + ... + αn = 1 and y0 = α1b1 + ... + αnbn. Choose x0 ∈ A so
that 〈x0, y0〉 = 1. Since b1, ..., bn ∈ π(A), we have that 〈x0, bi〉 ≤ 1 for 1 ≤ i ≤ n. Now we
show that 〈x0, bi〉 = 1 for 1 ≤ i ≤ n. Suppose, on the contrary, that 〈x0, bj〉 < 1 for some
1 ≤ j ≤ n. Since αj > 0, we obtain that

〈x0, y0〉 =
n∑
i=1

αi〈x0, bi〉 <
n∑
i=1

αi = 1,

which contradicts the choice of α1, ..., αn.
Besides, 〈x, bi〉 ≤ 1 for each x ∈ A. Then b1, ..., bn ∈ Σ0(A). Since α1, ..., αn > 0 and

y0 =
∑n

i=1 αibi ∈ Σmax(A), we have that b1, ..., bn ∈ Σmax(A). Thus, b1, ..., bn ∈ B0 and
y0 ∈ co(B0).

Observe that each functional y ∈ B0 has the maximum value 1 onM . Thus, ifB0∩Σ0 6= ∅,
where Σ0 is the set of support functionals on unit ball, then M is not AP. It remains to
consider the case B0 ∩ Σ0 = ∅. Let B0 = {yn : n ∈ N}. Since bn /∈ Σ0 for each n ∈ N,
we can choose δn > 0 so that µ(Tn) = µ({t ∈ [0, 1] : yn(t) > ‖yn‖ − δn}) < 1

4n
and put

S = [0, 1] \
(
∪∞n=1 Tn

)
. Obviously, µ(S) > 0 and C = {x|

S
: x ∈ M} is a closed bounded

convex set in the Banach space L1(S). By the Bishop-Phelps theorem [3], there exist functions
u0 ∈ C and v0 ∈ L∞(S) such that 1 =

∫
S
u0v0dµ = max

u∈C

∫
S
uv0dµ.

Consider the functions y0 ∈ Y and x0 ∈ X

y0(t) =

{
|v0(t)|, t ∈ S,
0, t /∈ S,

x0(t) =

{
|u0(t)|, t ∈ S,
0, t /∈ S.



180 V. A. KHOLOMENYUK, V. V. MYKHAYLYUK

Note that x0 ∈ A and y0 ∈ Σ0(A). Since π(A) is norm bounded in L1, so is Σ0(A), and
by Proposition 10, there exist ỹ ∈ Σmax(A) such that y0 ≤ ỹ. Thus, there exist ỹ1, ..., ỹn ∈ B0

and α1, ..., αn > 0 such that
n∑
i=1

αi = 1 and ỹ =
n∑
i=1

αiỹi.

Let ỹ1 = yk. Note that 〈x0, yk〉 = 1. Consider the function y∗ ∈ L∞,

y∗(t) =

{
yk(t), t ∈ [0, 1] \ Tk,
‖yk‖ − δk, t ∈ Tk,

which obviously belongs to Σ0. We have∫ 1

0

y∗x0dµ =

∫
S

y∗x0dµ =

∫
S

ykx0dµ = 1.

On the other hand, for each x ∈ M we have |〈x, y∗〉| ≤ 〈|x|, y∗〉 ≤ 〈|x|, yn〉 ≤ 1. Thus,
y∗ ∈ Σ(M) ∩ Σ0 and M is not AP-set.
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