УДК 517.982

V. A. Kholomenyuk, V. V. Mykhaylyuk

ALMOST ANTIPROXIMINAL SETS IN L_1

V. A. Kholomenyuk, V. V. Mykhaylyuk. Almost antiproximinal sets in L_1 , Mat. Stud. 35 (2011), 172–180.

We introduce a notion of almost antiproximinality of sets in the space L_1 which is a weakening of the notion of antiproximinality. Also we investigate properties of almost antiproximinal sets and establish a method of construction of almost antiproximinal sets.

В. А. Холоменюк, В. В. Михайлюк. Почти антипроксиминальные множества в пространстве L₁ // Мат. Студії. – 2011. – Т.35, №2. – С.172–180.

В пространстве L_1 вводится понятие почти антипроксиминальности множеств, которое является ослаблением понятия антипроксиминальности. Исследуются свойства почти антипроксиминальных множеств и устанавливается метод построения почти антипроксиминальных множеств.

1. Introduction. By d(x, M) we denote the distance $\inf\{||x - y|| : y \in M\}$ between an element x of a normed space X and a non-empty set $M \subseteq X$. An element $y \in M$ is called the *nearest point* to x if ||x - y|| = d(x, M). The set of all nearest points to a point x in a set M is denoted by $P_M(x)$.

A set M is called an *antiproximinal* (AP) set if $P_M(x) = \emptyset$ for each $x \in X \setminus M$.

Let X^* be the Banach space conjugate to X. A functional $f \in X^*$ attains supremum on $M \subseteq X$ if there exists an element $x \in M$ such that $f(x) = \sup f(M)$. By $\Sigma(M)$ we denote the set of all functionals which attain supremum on M, i.e.

$$\Sigma(M) = \{ f \in X^* \colon \exists x \in M \mid f(x) = \sup f(M) \}.$$

Let X be a normed space, $x_0 \in X \setminus \{0\}$. A functional $f_0 \in X^*$ is called a *support functional* in x_0 if $||f_0|| = 1$ and $f_0(x_0) = ||x_0||$.

M. Edelstein and A. Thompson in [1] showed that a bounded closed convex subset A of Banach space X is AP if and only if each non-zero support functional of the set A does not attain maximum on the closed unit ball B of X, i.e. $\Sigma(A) \cap \Sigma(B) = \{0\}$.

In 1961 E. Bishop and P. Phelps proved that each Banach space is subreflexive, i.e. the set of functionals which attain their maximum at unit ball is dense in this space [2], and in 1963 they generalized this result to the case of convex sets (see [3]).

Plenty of mathematicians have worked on the problem of the existence of non-empty closed convex bounded AP-sets in Banach spaces. In particular, it is proved in [1]–[7] that such sets exist in the spaces $c_0, c, L_{\infty}, C(X)$ (with some especial conditions on X).

Besides, V. Klee showed in [4] that a Banach space X contains a non-empty closed convex (not obligatory bounded) AP-set if and only if X is not reflexive.

2010 Mathematics Subject Classification: 46B28, 46E30.

In connection with these facts, the following question on the existence of non-empty closed convex bounded AP-sets in L_1 was naturally risen by professor V. Fonf (see [12]).

Question. Do there exist non-empty closed convex bounded AP-sets in L_1 ?

Note that the example of radially bounded (i.e. bounded in each direction) AP-set M in L_1 was constructed in [7], but this set M is not bounded.

In this paper we introduce some weakening of the notion of antiproximinality which we call almost antiproximinality, and investigate properties of closed convex bounded almost AP-sets in L_1 .

2. Definition of almost AP-set in L_1 , examples. By L_1 and L_∞ we denote the spaces $L_1[0,1]$ and $L_{\infty}[0,1]$ respectively. The space L_{∞} we identify with the space L_1^* and denote $y(x) = \langle x, y \rangle = \int_0^1 y(t)x(t)d\mu$. Furthermore, for a set $A \subseteq L_1$, the sets $\{y \in L_\infty : \langle x, y \rangle \leq 0\}$ 1 $\forall x \in A$ and $\{y \in L_{\infty} : |\langle x, y \rangle| \le 1 \ \forall x \in A\}$ are called the *polar* and the *absolute polar* of the set A respectively. The polar and the absolute polar of a set $B \subseteq L_{\infty}$ are introduced similarly.

It is easily seen that the set $\Sigma(B)$ of all support functionals at the unit ball B of L_1 consists of all $y \in L_{\infty}$ such that $\mu(\{t \in [0,1] : |y(t)| = ||y||\}) > 0$. The most obvious examples of non-zero functionals $y \in \Sigma(B)$ are so-called *signs*, i.e. such $y \in L_{\infty}$ that $|y| = \chi_T$, where χ_T is the characteristic function of a measurable set $T \subseteq [0, 1]$ having positive measure.

According to the characterization of AP-sets obtained by M. Edelstein and A. Thompson, the next notion is a natural weakening of the conception of antiproximinality in L_1 .

Definition 1. A set $A \subseteq L_1$ is called *almost antiproximinal (almost AP)* if for each set $T \subseteq [0,1]$ of positive measure any functional $y \in L_{\infty}$ such that $|y| = \chi_{\tau}$ does not attain supremum on A.

Suppose that a set $A \subseteq L_1$ has the following property: $x \in A$ if and only if $|x| \in A$. Then almost antiproximinality of A is equivalent to the fact that $\chi_{\tau} \notin \Sigma(A)$ for each measurable set $T \subseteq [0, 1]$ having positive measure. (Indeed, if a sign attains supremum on a set $T \subseteq [0, 1]$ at some point $x \in A$, then χ_{T} attains supremum at $|x| \in A$).

We denote $A_y = \{x \in L_1: \int_0^1 |xy| d\mu \le 1\}$ for any function $y \in L_\infty$.

Definition 2. A measurable function $y: [0,1] \to \mathbb{R}$ is called *rearrange monotone* if for each $\alpha \in \mathbb{R}$ the set $\{t \in [0,1] : y(t) = \alpha\}$ has measure zero.

Proposition 1. Let $y \in L_{\infty}$ be rearrange monotone. Then the set $M = A_y$ is an almost AP-set, but is not an AP-set.

Proof. Let $T \subseteq [0,1]$ and $\mu(T) > 0$. Denote $m = \sup_{\mu(F)=0} \inf_{t \in T \setminus F} |y(t)|$.

We will prove that $\alpha = \sup_{x \in M} \int_0^1 |x| \chi_T d\mu \ge \frac{1}{m}$. Fix $\varepsilon > 0$. The set $S = \{t \in T : m \le |y(t)| \le m + \varepsilon\}$ has non-zero measure. Consider the function $x = \frac{1}{(m+\varepsilon)\mu(S)} \cdot \chi_s$. Since

$$\int_0^1 |xy| d\mu \le \frac{1}{(m+\varepsilon)\mu(S)}(m+\varepsilon) \int_0^1 \chi_S d\mu = 1,$$

one has that $x \in M$. So, $\alpha \ge \int_0^1 x d\mu = \frac{1}{(m+\varepsilon)}$. Tending ε to zero, we obtain that $\alpha \ge \frac{1}{m}$, in particular $\alpha = +\infty$ if m = 0.

It remains to show that $\int_0^1 |x| \chi_T d\mu < \frac{1}{m}$ for each $x \in M$ (so it will be proved that $\chi_T \notin \Sigma(M)$).

Fix $x \in M$ and put $T_1 = \{t \in T : |x(t)| > 0\}$. If $\mu(T_1) = 0$ then $\int_0^1 |x|\chi_T d\mu = 0 < \frac{1}{m}$. Suppose now $\mu(T_1) > 0$. Since the set $\{t \in [0, 1] : |y(t)| = m\}$ has zero measure, without loss of generality we can assume that |y(t)| > m for each $t \in T_1$. Then m|x(t)| < |x(t)y(t)| for each $t \in T_1$ and

$$m\int_{0}^{1}|x|\chi_{T}d\mu = m\int_{T_{1}}|x|\chi_{T}d\mu < \int_{T_{1}}|xy|d\mu \le \int_{0}^{1}|xy|d\mu \le 1.$$

So, $\int_0^1 |x| \chi_T d\mu < \frac{1}{m}$ and M is an almost AP-set.

Now we will prove that M is not an AP-set. Assume $a = \operatorname{essinf} |y|, c = \operatorname{essup} |y|$ and $b = \frac{a+c}{2}$. Since y is rearrange monotone, a < c and the sets $S = \{t \in [0,1] : |y(t)| \in (a,b)\}$ and $T = \{t \in [0,1] : |y(t)| \in (b,c)\}$ have measure greater than zero.

Consider the functions $y_0: [0,1] \to \mathbb{R}$ and $x_0: [0,1] \to \mathbb{R}$

$$y_0(t) = \begin{cases} |y(t)|, & t \in S, \\ b, & t \in T, \\ 0, & t \notin T \cup S, \end{cases} \quad x_0(t) = \begin{cases} \frac{1}{|y(t)|\mu(S)}, & t \in S, \\ 0, & t \notin S. \end{cases}$$

Since $|y_0| \le |y|$, we have that $\int_0^1 x y_0 d\mu \le 1$ for each $x \in A$.

On the other hand, $\int_0^1 |x_0y| d\mu = \int_S |x_0y| d\mu = 1 = \int_0^1 |x_0y_0| d\mu$. So $y_0 \in \Sigma(M) \cap \Sigma(B_1)$ which means that M is not an AP-set.

Proposition 2. Intersection of two almost AP-sets in L_1 need not be an AP-set.

Proof. Let $y_1(t) = 1 + t$, $y_2(t) = 2 - t$,

$$A_1 = \left\{ x \in L_1 \colon \int_0^1 |x| y_1 d\mu \le 1 \right\}, \ A_2 = \left\{ x \in L_1 \colon \int_0^1 |x| y_2 d\mu \le 1 \right\}$$

and $A = A_1 \cap A_2$. By Proposition 1, the sets A_1 and A_2 are almost AP-sets.

Consider the functions $y_0 = \chi_{[0,1]}$ and $x_0 = \frac{2}{3}\chi_{[0,1]} \in A$. Note that $y_0 = \frac{1}{3}(y_1 + y_2)$. Now for each $x \in A$ we have

$$\int_0^1 x y_0 d\mu = \frac{1}{3} \left(\int_0^1 x y_1 d\mu + \int_0^1 x y_2 d\mu \right) \le \frac{2}{3} = \int_0^1 x_0 y_0 d\mu.$$

Thus, $y_0 \in \Sigma(A)$.

A set A of measurable functions on [0, 1] is called *solid* if for any measurable functions x_1 and x_2 the condition $|x_1| \leq |x_2| \in A$ implies that $x_1 \in A$.

Proposition 3. Let $M \subseteq L_1$ be a non-empty closed absolute convex bounded solid set and $B = \Sigma(M) \cap M^o \cap L^+_{\infty}$, where M^o is the absolute polar of the set M. Then $M = \bigcap_{y \in B} A_y$. *Proof.* Note that the absolute polar M^o and the set $\Sigma(M)$ are solid and $A_{y_1} = A_{y_2}$ if $|y_1| = |y_2|$. So, $\bigcap_{y \in B} A_y = \bigcap_{y \in C} A_y$, where $C = \Sigma(M) \cap M^o$.

According to [3], the set $\Sigma(M)$ is norm dense in L_{∞} . We show that C is dense in M° . Assume to the contrary that there exist $\varepsilon > 0$, $y \in M^{\circ}$, $(y_n)_{n=1}^{\infty}$, $y_n \in \Sigma(M)$, $(x_n)_{n=1}^{\infty}$, $x_n \in M$, such that $\lim_{n \to \infty} y_n = y$ and $|y_n(x_n)| > 1 + \varepsilon$ for any $n \in \mathbb{N}$. Using boundedness of M, we choose $n \in \mathbb{N}$ such that $||(y_n - y)(x_n)|| < \frac{\varepsilon}{2}$. Then $|y(x_n)| > 1 + \frac{\varepsilon}{2}$, which is impossible.

Moreover, C is solid, so $\bigcap_{y \in B} A_y = \bigcap_{y \in C} A_y = C^o = (C^{oo})^o = M^{oo} = M.$

In connection with Propositions 2 and 3 the following question naturally arises.

Question. For which sets $B \subseteq L_{\infty}$ the set $M = \bigcap_{y \in B} A_y$ is an almost AP-set?

3. Positive polars in L_1 and L_{∞} , and their properties. Let

 $X = L_1^+ = \{x \in L_1 : x(t) \ge 0 \text{ almost everywhere (a.e.) on } [0,1]\}$

and $Y = \{y \in L_{\infty}^{+} : y(t) \geq 0 \text{ a.e. on } [0,1]\}$. Denote by $\sigma(X,Y)$ the weakest topology on X such that for each $y \in Y$ the function $f_y : X \to \mathbb{R}$, $f_y(x) = \int_0^1 xy d\mu$, is continuous. Similarly, by $\sigma(Y,X)$ we denote the weakest topology on Y such that for each $x \in X$ the function $f^x : Y \to \mathbb{R}$, $f^x(y) = \int_0^1 xy d\mu$, is continuous. We will shortly denote by σ the topologies $\sigma(X,Y)$ and $\sigma(Y,X)$.

Proposition 4. The topology σ coincides with the restriction of the weak topology w of L_1 on X.

Proof. Obviously, the restriction of w on X is stronger than σ . So, it remains to prove that for any $x_0 \in X$ and weak neighborhood U of the point x_0 in L_1 the set $U \cap X$ is a σ -neighborhood of the point x_0 in X. It is sufficient to consider the case $U = \{x \in L_1 : |\langle x - x_0, y \rangle| \le 1\}$, where $y \in L_{\infty}$ is fixed.

We denote $A = \{t \in [0,1] : y(t) \ge 0\}$ and $B = \{t \in [0,1] : y(t) < 0\}$. Put $y_1 = y\chi_A$, $y_2 = -y\chi_B$, $U_1 = \{x \in X : |\langle x - x_0, y_1 \rangle| \le \frac{1}{2}\}$ and $U_2 = \{x \in X : |\langle x - x_0, y_2 \rangle| \le \frac{1}{2}\}$. It is clear that $y_1, y_2 \in Y$, U_1, U_2 are σ -neighborhoods of $x_0 \in X$, moreover $U_1 \cap U_2 \subseteq U \cap X$. So, $U \cap X$ is a σ -neighborhood of the point x_0 .

The following proposition can be proved similarly.

Proposition 5. Topology σ coincides with the restriction of the weak^{*} topology w^* of L_{∞} on Y.

Given non-empty sets $A \subseteq X$ and $B \subseteq Y$, the sets

$$\pi(A) = \{ y \in Y \colon \langle x, y \rangle \le 1 \ \forall x \in A \} \text{ and } \pi(B) = \{ x \in X \colon \langle x, y \rangle \le 1 \ \forall y \in B \}$$

are called the *positive polars* of the sets A and B respectively.

For any $y_1, y_2 \in Y$ we denote $[y_1, y_2] = \{y \in Y : y_1 \le y \le y_2\}.$

Proposition 6. Let $A \subseteq X$ be a neighborhood of zero in X. Then $\pi(A)$ is σ -compact in Y, in particular, for each $y \in Y$ the set [0, y] is σ -compact.

Proof. Note that the set $\tilde{A} = \{x \in L_1 : |x| \in A\}$ is a neighborhood of zero in L_1 . Let $B = \pi(A)$ and $\tilde{B} = \tilde{A}^o$ be the absolute polar of \tilde{A} with respect to the duality $\langle L_1, L_\infty \rangle$.

Now we show that $y \in B$ if and only if $|y| \in B$.

Let $y \in B$ and $x \in A$ be arbitrary elements. Consider the element $x' \in L_1$, which is defined in the following way:

$$x'(t) = \begin{cases} x(t), & y(t) \ge 0, \\ -x(t), & y(t) < 0. \end{cases}$$

Obviously, $x' \in \tilde{A}$ and x'(t)y(t) = x(t)|y(t)| on [0,1]. Then $\left|\int_0^1 x|y|d\mu\right| = \left|\int_0^1 x'yd\mu\right| \le 1$. So, $|y| \in B$.

Conversely, let $y \in L_{\infty}$ be such that $|y| \in B$ and let $x \in \tilde{A}$ be an arbitrary element. Then $|x| \leq x'$ and $\left|\int_0^1 xy d\mu\right| \leq \left|\int_0^1 |x| |y| d\mu\right| \leq 1$. Hence, $y \in \tilde{B}$ if and only if $|y| \in B$, in particular, $B = B \cap Y$. According to the Alaouglu-Burbaki theorem [8, p.117], the set B is w^{*}-compact. Now using Proposition 3, the equality $B = B \cap Y$ and w^* -closeness of Y in L_{∞} , we obtain that B is σ -compact in Y.

Proposition 7. For any non-empty set $B \subseteq Y$ the positive bipolar $\pi(\pi(B))$ is the σ -closed convex hull of the set $\cup_{b \in B} [0, b]$.

Proof. Denote $D = co(\bigcup_{b \in B} [0, b])$ and $C = \overline{D}^{\sigma}$. Obviously, $C \subseteq \pi(\pi(B))$. Besides, $B \subseteq D$, therefore $\pi(\pi(B)) \subseteq \pi(\pi(D))$. Now it is sufficient to prove that $\pi(\pi(D)) = C$.

We set $D^o = \{x \in L_1 : \langle x, y \rangle \leq 1 \quad \forall y \in D\}$. Note that for any $y \in D$ and a measurable set $A \subseteq [0,1]$ we have $y \cdot \chi_A \in D$.

For any $x \in L_1$ denote $x^+ = x \cdot \chi_A$, where $A = \{t \in [0,1] : x(t) > 0\}$. Now we show that $x \in D^o$ if and only if $x^+ \in D^o$, i.e. $x^+ \in \pi(\pi(D))$. Note that $\int_0^1 xyd\mu \leq \int_0^1 x^+yd\mu$ for each $y \in Y$, therefore $x \in D^o$ if $x^+ \in D^o$.

Let $x \in D^o$, $y \in D$ and $A = \{t \in [0,1] : x(t) > 0\}$. Then $y \cdot \chi_A \in D$ and $\int_0^1 x^+ y d\mu =$ $\int_0^1 xy \chi_A d\mu \leq 1$. Thus, $x^+ \in D^o$.

Consider the set $D^{oo} = \{y \in L_{\infty} : \langle x, y \rangle \leq 1 \quad \forall x \in D^o\}$. We prove that $D^{oo} = \pi(\pi(D))$.

First we will show that $D^{oo} \subseteq Y$. Assume $y \in L_{\infty}$, $A = \{t \in [0,1]: y(t) < 0\}$ and $\mu(A) > 0$. Choose $x \in X$ such that $\{t \in [0,1]: x(t) > 0\} \subseteq A$ and $\int_0^1 xy d\mu < -1$. Then $z = -x \in D^o$ as $z^+ = 0 \in \pi(D)$, and $\int_0^1 zy d\mu = -\int_0^1 xy d\mu > 1$. Thus, $y \notin D^{oo}$.

Since for each $y \in Y$, we have $\int_0^1 xy d\mu \leq \int_0^1 x^+ y d\mu$,

$$D^{oo} = \left\{ y \in Y \colon \int_0^1 xy d\mu \le 1 \ \forall x \in D^o \right\} = \left\{ y \in Y \colon \int_0^1 x^+ y d\mu \le 1 \ \forall x \in D^o \right\} = \left\{ y \in Y \colon \int_0^1 xy d\mu \le 1 \ \forall x \in \pi(D) \right\} = \pi(\pi(D)).$$

Now by the bipolar theorem [9, p.160] and by Proposition 5 we have $\pi(\pi(D)) = D^{oo} =$ $\bar{D}^{w^*} = \bar{D}^{\sigma} = C.$

Proposition 8. Let $B = B_1 \cup B_2 \subseteq Y$, and let B be norm bounded. Then

$$\overline{\operatorname{co}(\bigcup_{b\in B} [0,b])} = \operatorname{co}\left(\overline{\operatorname{co}(\bigcup_{b\in B_1} [0,b])} \cup \overline{\operatorname{co}(\bigcup_{b\in B_2} [0,b])}\right),$$

where closures are taken in the σ -topology.

Proof. Denote $A_1 = co(\bigcup_{b \in B_1} [0, b]), A_2 = co(\bigcup_{b \in B_2} [0, b])$ and $A = co(\bigcup_{b \in B} [0, b])$. Obviously, $\operatorname{co}(A_1 \cup A_2) \subset A.$

Now we show that $\overline{A} \subseteq \operatorname{co}(\overline{A_1} \cup \overline{A_2})$. Note that $A \subseteq \operatorname{co}(A_1 \cup A_2)$. Therefore, it is sufficient to prove that the set $co(\overline{A_1} \cup \overline{A_2})$ is closed.

By Proposition 7, we have $\overline{A_1} = \pi(\pi(B_1))$ and $\overline{A_2} = \pi(\pi(B_2))$. Moreover, the norm boundedness of the sets B_1 and B_2 together with Proposition 6 imply that the sets $\overline{A_1}$ and A_2 are σ -compact.

Consider the following continuous mapping $\varphi \colon [0,1]^2 \times Y^2 \to Y, \ \varphi(\lambda,\mu,y_1,y_2) = \lambda y_1 + \lambda y_2$ μy_2 . The set $S = \{(\lambda, \mu) \in [0, 1]^2 : \lambda + \mu = 1\}$ is compact in $[0, 1]^2$. Hence, the set $co(\overline{A_1} \cup$ $\overline{A_2} = \{\lambda x_1 + \mu x_2 : x_1 \in A_1, x_2 \in A_2\} = \varphi(S \times \overline{A_1} \times \overline{A_2})$ is compact as the continuous image of a compact set. Then $co(\overline{A_1} \cup \overline{A_2})$ is closed. **Proposition 9.** Let measurable functions x, y, z be such that $y \le z$ and $\int_0^1 xz d\mu \le \int_0^1 xy d\mu$. Then y = z a.e. at $T = \{t \in [0, 1] : x(t) > 0\}.$

4. Support functionals at X and Y. For each set $A \subseteq X = L_1^+$ by $\Sigma(A)$ we denote the set of all $y \in Y = L_{\infty}^+$ such that $\max_{x \in A} \langle x, y \rangle$ exists. By $\Sigma_0(A)$ we denote the set of all $y \in Y = L_{\infty}^+$ such that $\max_{x \in A} \langle x, y \rangle = 1$, and by $\Sigma_{\max}(A)$ denote the set of all maximal elements of $\Sigma_0(A)$. Given any set $B \subseteq Y$, by $\Sigma_0(B)$ we denote the set of all $x \in X = L_1^+$ such that $\max_{y \in B} \langle x, y \rangle = 1$, and by $\Sigma_{\max}(B)$ denote the set of all maximal elements of $\Sigma_0(B)$.

Proposition 10. Let $A \subseteq X$ be such that $\Sigma_0(A)$ is norm bounded in L_1 . Then for each $y \in \Sigma_0(A)$ there exists $y' \in \Sigma_{\max}(A)$ such that $y \leq y'$.

Proof. Suppose the contrary. Then by the Levi theorem [10, p.299], we can construct a strictly increasing transfinite sequence $(y_{\xi}): \xi < \omega_1$ of functions $y_{\xi} \in \Sigma_0(A)$, where ω_1 is the first uncountable ordinal. Then $\int_0^1 y_{\xi} d\mu < \int_0^1 y_{\eta} d\mu$ for $1 \leq \xi < \eta < \omega_1$ and the transfinite sequence of numbers $a_{\xi} = \int_0^1 y_{\xi} d\mu$ is strictly increasing, which is impossible.

Proposition 11. Let $M \subseteq L_1$ be a closed absolute convex bounded solid neighborhood of zero, $A = M \cap X$ and $D = \Sigma_{\max}(A)$. Then $M = \bigcap_{y \in D} A_y$.

Proof. By Proposition 3, we have $M = \bigcap_{y \in C} A_y$, where $C = \Sigma(A) \cap \pi(A)$. Obviously, $D \subseteq C$. Note that for each $y \in C$ there exists $y' \in \Sigma_0(A)$ such that $y \leq y'$. Since $B = \Sigma_0(A) \subseteq \pi(A)$ and A is neighborhood of zero in X, $\Sigma_0(A)$ is norm bounded in L_∞ , and so, it is also norm bounded in L_1 . Then by Proposition 10, for each $y' \in \Sigma_0(A)$ there exists $y'' \in \Sigma_{\max}(A)$ such that $y' \leq y''$. Thus, for each $y \in C$ there exists $y'' \in D$ such that $y \leq y''$, in particular, $A_y \supseteq A_{y''}$. Then $M = \bigcap_{y \in C} A_y = \bigcap_{y \in D} A_y$.

Proposition 12. Let a set $A \subseteq X$ be such that $\Sigma_0(A)$ is a norm bounded non-empty set in L_1 and all functions $y \in \Sigma_{\max}(A)$ are rearrange monotone. Then the set $M = \{x \in L_1 : |x| \in A\}$ is an almost AP-set.

Proof. Suppose the contrary. Then there exists a measurable set $T \subseteq [0, 1]$ with $\mu(T) > 0$ such that $\alpha = \max_{x \in M} \int_T x d\mu$ exists. Note that $\alpha \neq 0$. Indeed, if $\alpha = 0$, then $x\chi_T = 0$ for each $x \in A$. Now for any $y_1 \in \Sigma_0(A)$ and C > 0 we have $y_1 + C\chi_T \in \Sigma_0(A)$, which contradicts the boundedness of $\Sigma_0(A)$.

Since the set M is balanced, $\alpha > 0$. Consider the function $y_0 = \frac{1}{\alpha} \chi_T$. Then $y_0 \in Y$ and $\max_{x \in M} \langle x, y_0 \rangle = \max_{x \in A} \langle x, y_0 \rangle = 1$. So, $y_0 \in \Sigma_0(A)$.

Then there exists $x_0 \in A$ such that $\langle x_0, y_0 \rangle = 1$. By Proposition 10, there exists $y_1 \in \Sigma_{\max}(A)$ such that $y_0 \leq y_1$. Besides, $\langle x_0, y_0 \rangle = \langle x_0, y_1 \rangle = 1$. By Proposition 9, $y_0 = y_1$ on the set $S = \{t \in [0, 1] : x_0(t) > 0\}$. Now since $\langle x_0, y_0 \rangle = 1$, we obtain that $\mu(S \cap T) > 0$. Hence, $y_1(t) = \frac{1}{\alpha}$ for each $t \in S \cap T$, which contradicts the conditions of the proposition, because $y_1 \in \Sigma_{\max}(A)$ is rearrange monotone.

Theorem 1. Let $B \subseteq Y$, $A = \pi(B)$ and the following conditions hold:

- (i) the set B is norm bounded in L_1 ;
- (ii) for each $x \in \Sigma_0(\pi(A))$ there exists $\varepsilon > 0$ such that the set $B_x = \{y \in B : \langle x, y \rangle \ge 1 \varepsilon\}$ is finite and each $y \in \operatorname{co}(B_x)$ is rearrange monotone.

Then the set $M = \bigcap_{y \in B} A_y$ is almost AP.

Proof. We show that <u>A</u> satisfies the conditions of Proposition 12. Note that by (i), the set $\tilde{B} = \pi(A) = \pi^2(B) = \overline{\operatorname{co}(\bigcup_{b \in B}[0, b])}$ is norm bounded.

Let $y_0 \in \Sigma_{\max}(A)$ and $x_0 \in A$ be such that $\langle x_0, y_0 \rangle = 1$. Obviously, $y_0 \in \tilde{B} = \pi(A) = \{y \in Y : \langle x, y \rangle \leq 1 \quad \forall x \in A\}$. Besides, since $x_0 \in A$, one has that $\langle x_0, y \rangle \leq 1 = \langle x_0, y_0 \rangle$ for any $y \in \tilde{B}$. So $x_0 \in \Sigma_0(\tilde{B})$. Using condition (ii), we choose $\varepsilon > 0$ so that set $B_1 = \{y \in B : \langle x_0, y \rangle \geq 1 - \varepsilon\}$ is bounded and each $y \in \operatorname{co}(B_1)$ is rearrange monotone. Then we put $B_2 = B \setminus B_1$.

Note that by the σ -compactness of [0, y], finiteness of B_1 and Propositions 7 and 8 we have that

$$\tilde{B} = \operatorname{co}(\bigcup_{b \in B} [0, b]) = \operatorname{co}\left(\operatorname{co}(\bigcup_{b \in B_1} [0, b]) \cup \operatorname{co}(\bigcup_{b \in B_2} [0, b])\right)$$

Denote $C_1 = \operatorname{co}(\bigcup_{b \in B_1}[0, b])$ and $C_2 = \overline{\operatorname{co}(\bigcup_{b \in B_2}[0, b])}$. Choose $y_1 \in C_1, y_2 \in C_2, \alpha_1, \alpha_2 \in [0, 1]$ with $\alpha_1 + \alpha_2 = 1$ such that $y_0 = \alpha_1 y_1 + \alpha_2 y_2$. Remind that $\langle x_0, y \rangle \leq 1$ for any $y \in \tilde{B}$ and $\langle x_0, y \rangle \leq 1 - \varepsilon$ for each $y \in C_2$. Now we obtain

$$1 = \langle x_0, y_0 \rangle = \alpha_1 \langle x_0, y_1 \rangle + \alpha_2 \langle x_0, y_2 \rangle \le \alpha_1 + \alpha_2 (1 - \varepsilon) = 1 - \alpha_2 \varepsilon.$$

So $\alpha_2 = 0$ and $y_0 \in C_1$, i.e. $y_0 = \sum_{b \in B_1} \alpha_b y_b$, where $\alpha_b \ge 0$ and $\sum_{b \in B_1} \alpha_b = 1$, and $y_b \in [0, b]$ for each $b \in B_1$.

We set $y^* = \sum_{b \in B_1} \alpha_b b$ and show that $y_0 = y^*$. Firstly observe that $y_0 \leq y^*$ as $y_b \leq b$ for any $b \in B_1$. On the other hand, since $\langle x_0, y^* \rangle \geq \langle x_0, y \rangle = 1$ and $y^* \in \pi(A)$, we obtain $\langle x_0, y^* \rangle = \max_{x \in A} \langle x, y^* \rangle = 1$. Hence, $y^* \in \Sigma_0(A)$. Then $y_0 \in \Sigma_{\max}(A)$ yields $y_0 = y^* = \sum_{b \in B_1} \alpha_b b \in \operatorname{co}(B_1)$. Therefore, y_0 is rearrange monotone, according to the choice of B_1 . Thus, A satisfies the conditions of Proposition 12, and M is an almost AP-set. \Box

Corollary 1. Let $B \subseteq Y$ be a finite set such that all functions $y \in co(B)$ are rearrange monotone. Then the set $M = \bigcap_{y \in B} A_y$ is almost AP.

Proof. Denote $A = \pi(B)$, $D = \pi(\pi(B))$. The set D satisfies the conditions of Theorem 1 as $\Sigma_{\max}(A) \subseteq \operatorname{co}(B)$.

Corollary 2. Let B be a finite collection of polynomials on [0, 1] having pairwise distinct degrees ≥ 1 . Then the set $M = \bigcap_{y \in B} A_y$ is almost AP.

The following example shows the existence of a countable set B such that $\bigcap_{y \in B} A_y$ is almost AP.

Example. The set $B = \{2\frac{1}{4} + \frac{3t}{4\pi}, 2 \pm \cos nt, 2 \pm \sin nt, n \in \mathbb{N}, t \in [-\pi, \pi]\}$ satisfies the conditions of Theorem 4.4 for the spaces $X = L_1^+([-\pi, \pi])$ and $Y^+ = L_\infty^+([-\pi, \pi])$, and the set $M = \{x \in L_1[-\pi, \pi] : |\langle x, y \rangle| \leq 1 \quad \forall y \in B\}$ is almost AP.

Indeed, the set B satisfies condition (i) by construction. We show that condition (ii) holds.

Denote $b_0 = 2\frac{1}{4} + \frac{3t}{4\pi}$. Choose $x \in \Sigma_0(\pi(A))$ and find $\varepsilon > 0$ such that the set $B_x = \{b \in B: \langle x, b \rangle > 1 - \varepsilon\}$ is finite and $\mu(\{t \in [-\pi, \pi]: y(t) = \alpha\}) = 0$ for any $y \in \operatorname{co}(B_x)$ and $\alpha \in \mathbb{R}$. First we consider the case when $x = \operatorname{const} = C > 0$ a. e. on $[-\pi, \pi]$. It is easy to show that $\langle x, b \rangle = \int_{-\pi}^{\pi} bxd\mu = 4\pi C$ for any $b \in B, b \neq b_0$ and $\langle x, b_0 \rangle = \int_{-\pi}^{\pi} bxd\mu = 4, 5\pi C$. Since $x \in \Sigma_0(\pi(A))$, one has that $\langle x, b_0 \rangle = 4.5\pi C \leq 1$, and hence, $C \leq \frac{1}{4.5\pi}$. Then $\langle x, b \rangle \leq \frac{8}{9}$ for each $b \in B, b \neq b_0$.

Put $\varepsilon = \frac{1}{9}$. Then $\{b \in B : \langle x, b \rangle > 1 - \varepsilon\} = \{b \in B : \langle x, b \rangle > \frac{8}{9}\} = \{b_0\}$, i.e. the set E is finite. Obviously, $\operatorname{co}(B_x) = \{b_0\}$ and $\mu(\{t \in [-\pi, \pi] : b_0(t) = \alpha\}) = 0$ for each $\alpha \in \mathbb{R}$.

Now suppose $x \neq \text{const}$ on $[-\pi, \pi]$ (up to sets of zero measure). Then the set $\{n \in \mathbb{N} : a_n = \int_{-\pi}^{\pi} x(t) \sin nt d\mu \neq 0 \text{ or } b_n = \int_{-\pi}^{\pi} x(t) \cos nt d\mu \neq 0\}$ is non-empty ([11, p.270]), moreover $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$ ([11, p.260]).

Denote $\alpha = \sup\{|a_n|, |b_n|: n \in \mathbb{N}\}$. Obviously, $\alpha > 0$ and the sets $N_1 = \{n \in \mathbb{N}: a_n > \frac{\alpha}{2}\}$, $N_2 = \{n \in \mathbb{N}: -a_n > \frac{\alpha}{2}\}$, $N_3 = \{n \in \mathbb{N}: b_n > \frac{\alpha}{2}\}$ and $N_4 = \{n \in \mathbb{N}: -b_n > \frac{\alpha}{2}\}$ are finite because $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0$. Now we set $\tilde{B} = \{2 + \cos nt: n \in N_1\} \cup \{2 - \cos nt: n \in N_2\} \cup \{2 + \sin nt: n \in N_3\} \cup \{2 - \sin nt: n \in N_4\} \cup \{b_0\}$. Note that \tilde{B} is finite. Besides, $1 = \sup_{b \in B} \int_{-\pi}^{\pi} bx d\mu \ge 2 \int_{-\pi}^{\pi} x d\mu + \alpha$ and for each $b \in B \setminus \tilde{B}$ we have $\int_{-\pi}^{\pi} bx d\mu \le 2 \int_{-\pi}^{\pi} x d\mu + \frac{\alpha}{2} \le 1 - \frac{\alpha}{2}$. Putting $\varepsilon = \frac{\alpha}{3}$, we obtain that the set $\{b \in B: \langle x, b \rangle \ge \int_{-\pi}^{\pi} bx d\mu - \varepsilon\} \subseteq \tilde{B}$ is finite. Since $N_1 \cap N_2 = N_3 \cap N_4 = \emptyset$, each function $y \in \operatorname{co}(\tilde{B})$ is rearrange monotone. Thus, condition (ii) of Theorem 1 holds.

Thus, by Theorem 1 the set $M = \{x \in L_1 : |x| \in \pi(B)\}$ is almost AP, moreover, $\Sigma_{\max}(A) \subseteq \operatorname{co}(B).$

Note that for the given examples of almost AP-sets $M = \bigcap_{y \in B} A_y$ the condition $\Sigma_{\max}(A) \subseteq \operatorname{co}(B)$ holds, where B is, at most, a countable set. The following theorem shows that constructed in such a way sets are not AP-set.

Theorem 2. Let $A \subseteq X$ be a closed bounded convex set, $B \subseteq \pi(A)$, let $\pi(A)$ be a norm bounded subset of L_1 and let B be, at most, a countable set such that $\Sigma_{\max}(A) \subseteq \operatorname{co}(B)$. Then the set $M = \{x \in L_1 : |x| \in \pi(B)\}$ is not AP.

Proof. We set $B_0 = B \cap \Sigma_{\max}(A)$ and show that $\Sigma_{\max}(A) \subseteq \operatorname{co}(B_0)$.

Assume $y_0 \in \Sigma_{\max}(A)$. By the theorem conditions, there exist $n \in \mathbb{N}$, $b_1, ..., b_n \in B$ and $\alpha_1, ..., \alpha_n \in (0, 1]$ such that $\alpha_1 + ... + \alpha_n = 1$ and $y_0 = \alpha_1 b_1 + ... + \alpha_n b_n$. Choose $x_0 \in A$ so that $\langle x_0, y_0 \rangle = 1$. Since $b_1, ..., b_n \in \pi(A)$, we have that $\langle x_0, b_i \rangle \leq 1$ for $1 \leq i \leq n$. Now we show that $\langle x_0, b_i \rangle = 1$ for $1 \leq i \leq n$. Suppose, on the contrary, that $\langle x_0, b_j \rangle < 1$ for some $1 \leq j \leq n$. Since $\alpha_j > 0$, we obtain that

$$\langle x_0, y_0 \rangle = \sum_{i=1}^n \alpha_i \langle x_0, b_i \rangle < \sum_{i=1}^n \alpha_i = 1,$$

which contradicts the choice of $\alpha_1, ..., \alpha_n$.

Besides, $\langle x, b_i \rangle \leq 1$ for each $x \in A$. Then $b_1, ..., b_n \in \Sigma_0(A)$. Since $\alpha_1, ..., \alpha_n > 0$ and $y_0 = \sum_{i=1}^n \alpha_i b_i \in \Sigma_{\max}(A)$, we have that $b_1, ..., b_n \in \Sigma_{\max}(A)$. Thus, $b_1, ..., b_n \in B_0$ and $y_0 \in \operatorname{co}(B_0)$.

Observe that each functional $y \in B_0$ has the maximum value 1 on M. Thus, if $B_0 \cap \Sigma_0 \neq \emptyset$, where Σ_0 is the set of support functionals on unit ball, then M is not AP. It remains to consider the case $B_0 \cap \Sigma_0 = \emptyset$. Let $B_0 = \{y_n : n \in \mathbb{N}\}$. Since $b_n \notin \Sigma_0$ for each $n \in \mathbb{N}$, we can choose $\delta_n > 0$ so that $\mu(T_n) = \mu(\{t \in [0,1] : y_n(t) > ||y_n|| - \delta_n\}) < \frac{1}{4^n}$ and put $S = [0,1] \setminus (\bigcup_{n=1}^{\infty} T_n)$. Obviously, $\mu(S) > 0$ and $C = \{x|_S : x \in M\}$ is a closed bounded convex set in the Banach space $L_1(S)$. By the Bishop-Phelps theorem [3], there exist functions $u_0 \in C$ and $v_0 \in L_{\infty}(S)$ such that $1 = \int_S u_0 v_0 d\mu = \max_{u \in C} \int_S uv_0 d\mu$.

Consider the functions $y_0 \in Y$ and $x_0 \in X$

$$y_0(t) = \begin{cases} |v_0(t)|, & t \in S, \\ 0, & t \notin S, \end{cases} \quad x_0(t) = \begin{cases} |u_0(t)|, & t \in S, \\ 0, & t \notin S. \end{cases}$$

Note that $x_0 \in A$ and $y_0 \in \Sigma_0(A)$. Since $\pi(A)$ is norm bounded in L_1 , so is $\Sigma_0(A)$, and by Proposition 10, there exist $\tilde{y} \in \Sigma_{\max}(A)$ such that $y_0 \leq \tilde{y}$. Thus, there exist $\tilde{y}_1, ..., \tilde{y}_n \in B_0$ and $\alpha_1, ..., \alpha_n > 0$ such that $\sum_{i=1}^n \alpha_i = 1$ and $\tilde{y} = \sum_{i=1}^n \alpha_i \tilde{y}_i$. Let $\tilde{y}_1 = y_k$. Note that $\langle x_0, y_k \rangle = 1$. Consider the function $y^* \in L_{\infty}$,

$$y^{*}(t) = \begin{cases} y_{k}(t), & t \in [0,1] \setminus T_{k}, \\ \|y_{k}\| - \delta_{k}, & t \in T_{k}, \end{cases}$$

which obviously belongs to Σ_0 . We have

$$\int_0^1 y^* x_0 d\mu = \int_S y^* x_0 d\mu = \int_S y_k x_0 d\mu = 1.$$

On the other hand, for each $x \in M$ we have $|\langle x, y^* \rangle| \leq \langle |x|, y^* \rangle \leq \langle |x|, y_n \rangle \leq 1$. Thus, $y^* \in \Sigma(M) \cap \Sigma_0$ and M is not AP-set.

REFERENCES

- 1. Edelstein M., Thompson A.C. Some results on nearest points and support properties of convex sets in $c_0//$ Pacific J. Math. - 1972. - V.40. - P. 553-560.
- Bishop E., Phelps R.R. A proof that every Banach space is subreflexive// Bull. Amer. Math. Soc. 1961. 2.– V.67. – P. 97–98.
- 3. Bishop E., Phelps R.R. Support functionals of convex sets// Proc.Simposia in Pure Math. (Convexity) Amer. Math. Soc. – 1963. – V.7. – P. 27–35.
- 4. Klee V. Remarks on nearest points in normed linear spaces// Proc. Colloquium on Convexity, Copenhagen. – 1965. – P. 168–176.
- 5. Cobzaş S. Antiproximinal sets in the spaces c_0 and c// Math. Notes. 1975. V.17. P. 449-457.
- Fonf V.P. On antiproximinal sets in spaces of continuous functions on compacta// Mat. Zametki. 1983. 6. - V.33, №4. - P. 549–558. (in Russian)
- 7. Balaganskii V.S. Antiproximinal sets in the space of continuous functions// Math. Notes. - 1996. - V.60, №5. – P. 485–494.
- Kantorovich L.V., Akilov G.P. Functional analysis. Moscow: Nauka, 1984. 752p. (in Russian) 8.
- 9. Schaefer H. Topological vector spaces. Moscow: Mir, 1971. 359p. (in Russian)
- 10. Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis. Moscow: Nauka, 1976. – 544p. (in Russian)
- 11. Natanson I.P. Theory of functions of real variable. Moscow: Nauka, 1974. 480p. (in Russian)
- 12. Martínez-Abejón A., Odell E., Popov M.M. Some open problems on the classical function space $L_1//$ Mat. Stud. – 2005. – V.24, №2. – P. 173–191.

Jurii Fedkovych Chernivtsy National University, Department of mathematical analysis

Received 10.02.2010